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a b s t r a c t

Estimation of low failure probabilities in high dimensional structural reliability problems generally
involves a trade-off between computational effort and accuracy of the estimate, whether efficient sam-
pling techniques have been employed or not. While a substantial effort continues to be made by the com-
munity to develop and benchmark new and efficient sampling schemes, the limits of performance of a
given algorithm, e.g., what is the best attainable accuracy of the method for a fixed computational effort
and if that is good enough, have not received comparable attention. However, such insights could prove
valuable in making the right choice in solving a computationally demanding reliability problem. In a
multi-objective stochastic optimization formulation, these questions yield the so-called Pareto front or
the set of non-dominated solutions: solutions that cannot be further improved without worsening at
least one objective. Posteriori user defined preferences can then be applied to rank members of the Pareto
set and obtain the best strategy. We take up two classes of variance-reducing algorithms – importance
sampling (IS) and subset simulations (SS) – and apply them to a range of benchmarked reliability prob-
lems of various size and complexity to bring out the issue of optimality and trade-off between accuracy
and effort. The design variables are variously of categorical, discrete as well as continuous types and the
stochastic multi-objective optimization without recourse is solved using Genetic Algorithms. In each
case, we ascertain the best possible accuracies that a given method can achieve and identify the
corresponding design variables. We find that the proposal pdf does have an effect on the efficiency of
SS, the FORM design point is not always the best sampling location in IS and setting the sensitivity param-
eter associated with Adaptive Importance Sampling at 0.5 does not guarantee optimal performance. In
addition to this the benefits of using SS for high dimensional problems are reinforced. We also show that
the Pareto fronts corresponding to different methods can intersect indicating that more is not always bet-
ter and different solution techniques for the same problem may be required in different computational
regimes.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For a distributed structure with several potential critical loca-
tions and failure modes (such as shear and flexure), subject to time
dependent loads and possessing time- and space-dependent mate-
rial properties, the reliability function estimates the probability
that the capacity, C, exceeds the demand, D, in each failure mode,
at all locations and at all times that the structure is in service:

RelðtÞ¼1�Pf ðtÞ¼ P½Cjðx;sÞP Djðx;sÞ; j6 J;8s2 ð0;tÞ;8x2X� ð1Þ

where X is the set of critical locations of the structure, J is the total
number of failure modes at each critical location, and t is total time

horizon. Both capacity and demand of the structure are generally
functions of space and time and constitute a multidimensional sto-
chastic process.

The structural reliability problem in its most general formula-
tion is thus infinite dimensional both in time and space which of
course makes it computationally intractable; hence various levels
of simplification are adopted. If there is only one critical location
with only one failure mode, and demand and capacity are time
invariant as well, we have the most basic formulation: a time-inde-
pendent element level reliability problem which typically is
described by a few basic variables and can be solved by elegant
geometric techniques such as FORM and SORM. Monte Carlo sim-
ulation based techniques can also be adopted with ease. Time
invariant problems with more than one failure mode and/or
location can be modeled as a system reliability problem with
appropriate unions and intersection of element level limit states
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and can still be tackled with FORM/SORM although with increasing
approximation. For such problems, simulation based techniques,
especially with some efficient sampling scheme, may appear more
desirable.

When the time dependent nature of C and/or D of the critical
element cannot be neglected, the next level of complexity in reli-
ability problems involves condensing the time dimension to a
finite number of discrete points by modeling the load as a station-
ary pulse process and the capacity as a non-random function of
time. A higher level of complexity occurs when stationarity can
no longer be assumed due either to non-stationary excitation or
to stochastic degradation: the first passage into failure by the pro-
cess C–D at the critical location may need to be solved by direct
simulations in the time domain.

In addition to modeling temporal randomness, spatial random-
ness may need to taken into account for distributed problems. Ran-
dom fields describing the spatially varying quantities are
discretized according to the set of critical locations and the discret-
ization scheme adopted to solve the problem as using a finite ele-
ment formulation, and can involve local averaging, series
approximations, interpolation etc. [1]. Spatial randomness thus
increases the dimensionality of the reliability problem; it also
affects the statistical dependence between safety margins at differ-
ent locations both at the same instant and at different instants of
time.

For most real life structures one thus finds a high dimensional
reliability problem [2]. In addition to this, very low failure proba-
bilities are typically associated with structures owing to the high
level of safety that society has come to expect of structures. A brief
discussion on acceptable failure probabilities of different types of
structures can be found in Bhattacharya et al. [3].

When the number of random variables become large, an impor-
tant issue is how much one can trust the reliability index obtained
from analytical approximate methods like FORM. In general the
optimization procedure associated with FORM becomes unman-
ageable in high dimensions and it is advisable that simulation
techniques be used [4]. The computation time increases with the
number of random variables and if gradient computations are done
numerically, the number of limit state function calls is propor-
tional to the number of random variables [5]. Adhikari [6] esti-
mated the failure probability using asymptotic distributions and
derived a modified beta (actual beta estimate does not give correct
values) for such cases. Schueller et al. [7] suggested that for dimen-
sions greater than 30 FORM yields inaccurate solutions.

Simulation based approaches to structural reliability computa-
tion offer a far greater flexibility and can address many of the
shortcomings of analytical based methods. At the same time, sim-
ulations have their limitations in terms of speed, size and accuracy.
After all, simulation based algorithms are basically numerical sta-
tistical sampling schemes, and can never be free of sampling errors.
All pseudo random number generators (as opposed to true random
bit generators that are accurate but very slow [8]) suffer from finite
periods (although the Mersenne Twister algorithm has one of the
longest periods [9]). The gap therefore, at any given point of time,
between computational need and computational resource, i.e.,
between the grand problem that the community would like to
solve and the problem it is able to tackle due to hardware and/or
algorithmic limitations, has always existed. Naturally, then, contin-
ual efforts have been made by the community to invent clever and
efficient simulation schemes [7,10–15].

While substantial effort continues to be made to develop and
benchmark new and efficient sampling schemes, the limits of per-
formance of a given algorithm, e.g., what is the best attainable
accuracy of the method for a fixed computational effort and if that
is good enough, have not received comparable attention. We
believe that such inquiries could prove valuable in making the

right choice in solving a computationally demanding reliability
problem. We investigate, from a multi-objective stochastic optimi-
zation viewpoint, two classes of variance-reducing algorithms –
importance sampling and subset simulations – in order to bring
out the issue of optimality and trade-off between accuracy and
effort.

Even though comparative studies have been undertaken in the
past, no author has tried to formulate it as a multi-objective opti-
mization problem to the best of our knowledge. Previous compar-
ative studies have only looked at superiority of one method over
the other [7,12,15]. In addition to a comparative study the present
work gives us an idea about the optimal combination of parame-
ters to be used for a given levels of computational resources. Pos-
teriori preferences of the user can be used to select the optimum
method along with the optimum design parameters for best per-
formance but is outside the scope of this paper.

We determine for a set of benchmark problems in structural
reliability the best accuracy that a method can achieve given a
fixed computational effort. We find that some conventional wis-
doms, such as IS should be centered on the FORM design point
and SS is not affected by the choice of proposal pdf, may not have
much merit. We also demonstrate that the Pareto fronts corre-
sponding to different methods can intersect indicating that more
is not always better and different solution techniques for the same
problem may be required at different regimes.

The structure of the paper is as follows. The next two sections
give a brief overview of variance reduction techniques in structural
reliability and multi-objective stochastic optimization problems in
engineering. We then demonstrate the concepts of design vari-
ables, random objectives, solutions of various ranks, and the Pareto
front through a simple one dimensional reliability problem. Fol-
lowing this, six benchmark reliability problems, in order of increas-
ing complexity, are taken up in detail.

2. Variance reduction techniques in estimating reliability

If the reliability problem given in Eq. (1) can be expressed in
terms of a finite number of basic variables, X, whose membership
in the failure region F can be verified by a finite number of binary
checks summarized by the indicator function IF, the failure proba-
bility is:

Pf ¼ PðX 2 FÞ ¼
Z

IFðxÞf XðxÞdx ¼ E½IFðXÞ� ð2Þ

There are a number of ways of solving the above integral as we have
discussed above. The most robust simulation based technique for
estimating Pf in Eq. (2) is the basic Monte Carlo Simulation (MCS)
[16]. However, while MCS gives an unbiased estimate of Pf, the coef-
ficient of variation (c.o.v.) of the MCS estimator is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Pf Þ=ðPf NÞ

p
which clearly shows the unfavourable relation between accuracy
and effort involved in basic MCS.

2.1. Importance sampling and its variants

In order to overcome the problem of low efficiency associated
with basic Monte Carlo techniques, a number of variance reduction
techniques have been proposed over the years [17,18], the most
widely used being Importance Sampling (IS) [16] whose basic idea
is to carry out the simulations in a region which is considerably
closer to the limit state:

Pf ¼ PðX 2 FÞ ¼
Z

IFðxÞ½f XðxÞ=hvðxÞ�hvðxÞdx ¼ E IFðvÞ
f XðvÞ
hvðvÞ

� �
ð3Þ

where hvð:Þ is the importance sampling density function which one
would ideally like to centre on the point of maximum likelihood. If
hvð:Þ is suitably chosen, one may generate a relatively large number
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