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Preterm births are rising in Canada and worldwide. As clinicians strive to identify preterm neonates at greatest
risk of significant developmental or motor problems, accurate predictive tools are required. Infants at highest
risk will be able to receive early developmental interventions, and will also enable clinicians to implement and
evaluate newmethods to improve outcomes.While severewhitematter injury (WMI) is associatedwith adverse
developmental outcome, more subtle injuries are difficult to identify and the association with later impairments
remains unknown. Thus, our goal was to develop an automated method for detection and visualization of brain
abnormalities in MR images acquired in very preterm born neonates. We have developed a technique to detect
WMI in T1-weighted images acquired in 177 very preterm born infants (24–32 weeks gestation). Our approach
uses a stochastic process that estimates the likelihood of intensity variations in nearby pixels; with small varia-
tions beingmore likely than large variations.We first detect the boundaries between normal and injured regions
of thewhitematter. Following this we use ameasure of pixel similarity to identifyWMI regions. Our algorithm is
able to detect WMI in all of the images in the ground truth dataset with some false positives in situations where
the white matter region is not segmented accurately.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent decades, improved neonatal intensive care unit (NICU)
therapies have reduced the mortality and increased the survival rate
of preterm neonates. However, developmental outcomes remain poor
and we urgently need to improve the health and developmental trajec-
tories of these children. Yet, despite advances in neonatal care, preterm
birth (b37weeks of gestation) remains a leading cause of childhood and
lifelong disability (Hack et al., 2002; Nand et al., 2011). Very preterm in-
fants, born at 32 weeks of gestation or younger, have the highest risk of
poor outcome.More than half of these very preterm infants have serious
developmental problems including cognitive, language, behavioral, sen-
sory, ormotor deficits (e.g., cerebral palsy) (Grunau et al., 1990; Grunau

et al., 2002). Poor developmental outcomes place enormous burdens on
the child, the family and the community (Bodeau-Livinec et al., 2008;
Grunau et al., 2004; Lindstrom et al., 2007; Marlow et al., 2005; Miller
et al., 2005; Oskoui et al., 2013; Roberts et al., 2009; Roberts et al.,
2010; Saigal et al., 2003; Walsh et al., 2010). Consequently, the major
remaining challenge in the care of the preterm is to optimize
neurodevelopmental outcomes and reduce childhood and lifelong
disabilities.

As clinicians strive to identify preterm neonates at greatest risk of
significant cognitive ormotor problems, accurate predictive tools are re-
quired. This will enable infants at highest risk to receive early develop-
mental interventions, and will also enable clinicians to implement and
evaluate novel treatments to improve these outcomes. The expertise
to identify and quantify brain injury in preterms is limited by the nu-
ances of interpreting neonatal brain MRI scans. Severe white matter in-
jury (WMI) and abnormal white matter maturation is associated with
poor neurodevelopmental outcome; however more subtle injuries are
difficult to identify and their impact on cognitive and motor develop-
ment remains less understood. Our software toolkit incorporating auto-
matic WMI detection will facilitate rapid brain imaging of preterm
neonates, including longitudinal evaluations, so that those at high risk
of neurodevelopmental impairment receive timely and appropriate
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intervention and support, ultimately improving long-term outcomes.
Thus, our goal was to develop a new system for automated detection
and visualization of brain abnormalities in the preterm neonate. In
this study, 177 very preterm born neonates (24–32 weeks gestation)
were assessed with MRI at two time points, early in life around the
time of birth, and at term-equivalent age.

Previous work has established multi-focal WMI as the characteristic
pattern of brain injury in preterm neonates (Chau et al., 2009; Miller
et al., 2005), and is most readily evident on T1 weighted images in the
first weeks after birth. Unlike periventricular leukomalacia (PVL), or
periventricular hemorrhage, an increasingly uncommon brain injury
(Hamrick et al., 2004), multi-focal WMI is identified by MRI in one-third
of preterm neonates, and predicts a higher risk of neurodevelopmental
disabilities in this and other neonates cohorts followed through child-
hood (Chau et al., 2013; Miller et al., 2002; Miller et al., 2005;
Woodward et al., 2012). More specifically, the burden of white matter
lesions was more predictive of neurodevelopmental outcome than the
lesion locations.WMI is also associatedwithmore diffuse abnormalities
of brain development (Back and Miller, 2014; Chau et al., 2009; Chau
et al., 2012). While focal WMIs seen on MRI are associated with signifi-
cant visual,motor and cognitive dysfunction, they are often indicative of
concurrent abnormal maturation (Counsell et al., 2008; Krishnan et al.,
2007; Miller et al., 2005; Woodward et al., 2006). WMI is followed by
diffusely abnormal microstructural (e.g., Fractional Anisotropy) and
metabolic brain development as preterm neonates grow to term age
(Adams et al., 2010; Chau et al., 2009; Miller et al., 2002). These abnor-
malities in brain development persist through childhood with associat-
ed adverse neurodevelopmental outcomes (Adams et al., 2010; Chau
et al., 2013; Counsell et al., 2008; Kalpakidou et al., 2012; Kesler et al.,
2008; Ment et al., 2009; Mullen et al., 2011; Srinivasan et al., 2007).
While other brain lesions occur in the preterm neonate, including
intraventricular hemorrhage, these are readily diagnosed on neurora-
diological review, with WMI being a risk for abnormal maturation and
thus the focus of the study. Yet the clinical application of MRI is limited
by the lack ofmethods to automatically detect and display areas of inju-
ry to the clinician. Thus, we focus on developing methods to identify
WMI.

2. Methods

Parametric modeling, e.g., Gaussian, requires a large number of sam-
ples and consistency of the underlying distribution for validity. Based on
the Law of Large Numbers (Rao, 1989) asymptotically the average of an
arbitrary distribution tends towards the Normal (Gaussian) distribu-
tion. However, given a small sample size this assumptionmay not be ac-
curate. There are also several additional constraints in our dataset
compared to usual adult brain MRI datasets. First, the infant brain un-
dergoes rapid changes, thus it is difficult to register different infant
brains to a specific model and compute an Atlas representing the aver-
age infant brain. Second, WMI in preterm neonates tend to be diffused
over a region of anMRI, compared to tumorswhich show up as a clearly
identifiable connected region. Third, the absolute intensities of pixels in
an injured region may be similar to intensities in non-injured regions;
thus, it is difficult to identify WMIs considering intensities alone. Thus,
our earlier attempts at identifying WMI using thresholding techniques
(Cheng et al., 2013) had limited success.

A characteristic of WMI is the abrupt intensity variation observed in
an MRI relative to surrounding pixels. We detect such changes using a
stochastic process which avoids the need for assumptions regarding
any underlying distributions, such as Gaussian.

Before detectingWMIswe need to segment thewhite matter region
of the brain and distinguish it from the graymatter. There are several al-
gorithms in the literature, such as (Zhang et al., 2001), that have shown
promising results in differentiating between the gray and white matter
regions. However, these methods work on adult brains and large
datasets where structures do not vary significantly among subjects.

We extended our Fluid Vector Flow (Wang et al., 2009) algorithm
using a fuzzymask for whitematter boundary detection. Our fully auto-
matic 3D algorithm (Wang et al., 2010) can be combined with fuzzy
clustering for brain white matter segmentation, following skull strip-
ping (Fischmeister et al., 2013). Results on various sections on a prema-
ture brain are shown in Fig. 1. We followed the steps below that were
applied to T1-weightedMRI scans (coronal volumetric T1-weighted im-
ages: TR, 36; TE, 9.2; FOV, 200 mm; slice thickness, 1 mm; no gap) ac-
quired on a Siemens Avanto 1.5 T scanner (Erlangen, Germany).

1 Pre-processing to enhance contrast;
2 A newNormalizedGaussianMixtureModel computed using Expecta-

tion Maximization;
3 Computing a Gaussian Bayesian Brain Map;
4 Processing this brain map to highlight the white matter and initialize

a Fluid Vector Flow algorithm;
5 Automatic initialization assisted by fuzzy clustering, supplemented

with a 3 × 3 median filter; and;
6 Using Fluid Vector Flow to segment the target region.

Though our results look promising the accuracy in delineating the
white matter region still needs improvement. It can be observed from
Fig. 1 that some regions outside the actual white matter are also detect-
ed by the current algorithm. Thus, further work is needed to make the
accuracy more reliable. Furthermore, accurate delineation of the
white matter region is not the focus of this work. Thus, we relied
on manual delineation of the white matter as the starting point to
test our WMI detection method. Our approach to limiting analysis
to the white matter region is consistent with recent work by others,
e.g. Deoni et al. (2013).

Assuming that the white matter region can be reasonably segment-
ed (Zhang et al., 2001) in the brain, we have developed a stochastic al-
gorithm for detecting WMIs. The absolute intensities of pixels in an
injured region may be similar to intensities in non-injured regions;
thus, it is difficult to identify injuries considering intensities alone. How-
ever, a characteristic of injuries is the abrupt intensity variation ob-
served relative to surrounding pixels. We detect such changes using a
stochastic process which avoids the need for assumptions regarding
any underlying distributions. To improve the robustness of our ap-
proach we stretch the histogram of a white matter region and group
small range of intensities. The probability of intensities in nearby pixels
being similar (very different) is assumed to be high (low). Based on this
assumption, and the statistical properties of a small subset of the images
we are workingwith, a transition probability matrix is estimated which
gives the likelihood of changing from one intensity at a given pixel to
another intensity at an adjacent pixel. A very small (statistically de-
fined) transition probability indicates the possibility of an injury. Fol-
lowing the identification of significant transition boundaries, we grow
regions by considering statistically close nearby values.

Detailed steps in our algorithm are described below.

• Divide pixel values into (N + 1) intervals to improve robustness and
add consistency when processing different images with varying
range of pixel values. These intervals can be considered as the State
Space {s0, s1, …, sN} of a stochastic process (Hoel et al., 1972).

• Compute the Conditional Transition Probability Matrix for pairs of
transformed pixel values, details described below. The transition
probability P(X(i, j) = sn, X_neighbor(i, j) = sb) is the probability of
transition from Sate sn to State sb at adjacent pixel locations; with ad-
jacency being defined by 8-connectivity (Rosenfled, 1970). For sim-
plicity, we consider the transition probabilities for adjacent pixels on
a 2D image. However, the approach can be generalized to non-
adjacent pixels by introducing another dimension in the matrix
reflecting distance between pixels. The method can be extended to
3D volumetric images by considering adjacency of voxels defined by
26-connectivity (Bertrand, 1994).

• Mark potential boundaries of WMIs considering the transition
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