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a b s t r a c t

An important issue regarding the use of probabilistic predictions for complex engineering systems is
characterising the dependence structure among its correlated performance functions, which are driven
by dependent or independent basic random variables. The interrelationship of these performance func-
tions can be attributed to the same random variables and the cross correlation among the input param-
eters. An assessment of joint failure probability for an engineering system is proposed, which is
associated with the correlated performance functions using a copula-based method by conveying the
dependence structure of the performance functions. The method is demonstrated with four simple engi-
neering problems, i.e., (a) bivariate distribution in which two predetermined performance functions are
associated with each other; (b) pile bearing capacity in which the performance functions are related with
the soil internal friction and the compressive strength of a concrete pile; (c) pipe flow in which the per-
formance function of three pipes in a sewer system is assessed with six independent random variables;
and (d) retaining wall in which the failure criteria for defining the performance functions include over-
turning failure about the toe point, sliding failure along the base, and bearing capacity instability consid-
ering uncertain soil properties. The computational efficiency is evaluated using the results based on the
conventional bounding methods. The joint failure probability expressed by copulas provides a means to
obtain the joint probabilities of multiple failure modes, which pave the way for an objective description
of the overall failure probability of a practical engineering problem.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Interest in addressing the uncertainties in the assessment of an
engineering system has long been demonstrated [2,31]. Tradition-
ally, engineers resort to factors of safety to provide confidence
when considering the difficulties associated with quantifying the
uncertainties [8]. However, the safety factor approach is question-
able because it usually does not take into account the underlying
variability within each variable and among variables [2,23].
Despite the inherent difficulty in performing a probabilistic
analysis, a number of researchers have attempted to introduce
probabilistic aspects to address the uncertainty associated with
factor-of-safety analysis in the context of risk analysis, as applied
to a wide range of engineering systems [28,31].

For a single failure mode or componental analysis, most proba-
bilistic analyses will fall into one of two categories [14,9]: numer-
ical approximate methods or Monte Carlo simulation. The former
usually includes the first-order second-moment (FOSM) method,

the first-order reliability method (FORM), and the point-estimate
method. To solve the problem effectively, these numerical approx-
imation methods make some simplifying assumptions regarding
the performance function. The Monte Carlo method relies on the
random sampling of variables from probability distributions, hence
an accurate determination of the tail distribution can require
excessive computational effort [18,24]. Despite the fact that the
necessary sample size to obtain the failure probability with a
desired accuracy is independent on the number of input random
variables, some of the sampling techniques can have some issues
with a large number of random variables [32]. Nevertheless, the
Monte Carlo simulation approach is flexible when dealing with a
nonlinear limit state function that is explicit in terms of the design
variables.

An accurate evaluation of the failure probability in an engineer-
ing system is significantly more difficult and subjective than the
above component level probability analysis. For multiple failure
modes, component failure events are usually dependent: if one
component failure mode occurs, then the probability of another
component failure mode is typically changed. A source of
dependent events can arise from the correlation of these random
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variables in determining the performance functions. Performance
functions formulated by the same variables, such as gravity,
strength parameters, and loading conditions, may contribute an
additional source of dependence.

The failure probability of a series system theoretically involves
multidimensional integration, which is usually difficult to evalu-
ate, especially for structures of practical significance. The efficiency
of the computational procedures used for estimating system failure
probability have resulted in several numerical approximation
approaches, including bounding techniques [5,7,2] and direct
approximation methods [11,39] and stochastic finite element anal-
ysis. Having introduced the simplifying assumptions of complete
correlation or independence among failure modes, the bounding
method provides the upper and lower failure probability bounds
with very little numerical effort. This is accomplished by incorpo-
rating the component failure probability for fully dependent and
independent failure events of a complex engineering system. This
method has attracted considerable attention recently [31], and in
some cases, the approach does not require explicit knowledge of
the dependence between failure modes. Simple bounds (including
the uni-modal method and bi-modal method, see [2]) are obtained
by assuming two extreme values for the correlation between com-
ponent failures and are usually too wide to be useful for design
decisions. To obtain better estimates of the probability of failure
in the risk analysis context, the statistical dependence characteris-
tics of the failure events must be measured accurately.

These dependence problems can be solved using a very flexible
joint distribution, a copula, which has been well known for some
time within the statistical literature. The theory was first men-
tioned by Sklar [27] and permits independence of the marginal
parameters. Any form of marginal distribution can be knitted
together to obtain their joint distribution, which is the main reason
for the popularity of copula theory in many areas of research
[10,16,38]. The re-construction of a joint cumulative distribution
function for an engineering system requires the use of a marginal
cumulative distribution function (CDF) of the component failure
mode and a dependence structure between them; therefore, an
efficient numerical approximation approach for estimating the sys-
tem failure probability can be developed, paving the way to precise
joint modelling of multiple failure modes.

The objective of this paper is to establish the joint probability
distribution of performance functions through copulas. Using this
joint distribution, a fairly accurate estimate of the probability of
failure for an engineering system is obtained, and the computa-
tional efficiency is demonstrated through four example illustra-
tions. The paper is organised as follows: the definitions of the
joint failure probability through copulas among performance func-
tions are described in Section 2. Section 3 provides several numer-
ical examples in civil engineering, and the computed failure
probabilities of multiple limit states are compared with the results
by the conventional bounding methods. The paper closes with a
summary of the key findings and the conclusions in Section 4.

2. Modelling the joint behaviour of performance functions

2.1. The failure probability of series structural systems

To simplify the study of system failure probability, two catego-
ries of systems are usually involved. In a series system, the failure
of one member automatically leads to the failure of the whole sys-
tem. An example of such a system is a chain, which fails when the
weakest link breaks. In a parallel system, all of the members must
fail before the system fails. The latter case is not of interest here.

The limit state separates the design space into ‘failure’ and ‘safe’
regions of the system by defining the performance function G. A

performance function or limit state function is formulated to
describe the corresponding failure mode in terms of a vector of
mutually independent or dependent basic random variables
Z = (Z1, Z2, ..., Zn) in which Zi are basic random variables, such as
the physical properties of the materials and loading conditions.
The measurement of these variables by laboratory tests or observa-
tions reveals large variations and inherent uncertainties [21,8].
However, due to the existence of many uncertainties of input vari-
ables Z, the outputs of performance function G cannot be predicted
with certainty; rather, random draws must be used. Additionally,
different failure modes will depend on the same random variables,
or the variables that contribute to the different failure modes will
be correlated in some way so that the failure modes become corre-
lated. A Venn diagram for three failure modes of a series system is
shown in Fig. 1 for illustration purposes. When the three failure
modes are mutually exclusive, there are no overlaps between any
of the sets (depicted in Fig. 1a). When none of the three failure
modes is mutually exclusive, there is an overlap among the sets
of failure (depicted in Fig. 1b). Hence, the joint failure probabilities,
when considering the intersection of these failure modes, should
be computed carefully by complex distribution transformations
and/or numerical integration.

2.2. Joint distribution of the performance functions using copulas

Assessing the probability distribution function of an engineer-
ing system requires a model for the joint behaviours of the random
outputs of performance functions for G, which include G1(Z),
. . ., Gs(Z) and are abbreviated as G1, . . ., Gs. Here, s is the number
of random outputs of the performance functions whose behaviours
are of interest for understanding. The probability distribution
function of the component failure mode is written by
PfiðGiðZÞ 6 0Þ, for i = 1, . . ., s. It is clear that a definition of the
joint failure distribution for G requires full information concern-
ing the marginal probability functions and the dependence
between all of the performance functions. Without considering
the interactions between the performance functions, the joint fail-
ure probability distribution of G is simply

Qs
i¼1PfiðGi 6 giÞ. When

considering the interactions among the performance functions,
the joint failure probability distribution is denoted by C(f1(g1), ...,
fs(gs)) or Pf1,...,s, here, fi(gi) = Pfi(Gi < gi), i.e., the continuous
random variable Gi is transformed to a uniform random variable
over the unit interval by its probability integral transformation.
Thus, C(f1(g1), ..., fs(gs)) is defined from [0, 1]s ? [0, 1] and it can
be obtained from the dependence structure between performance
functions. Let the transformations f1(g1), ..., fs(gs) be s uniform
random variables over the unit interval with a joint multivariate
distribution

Cðf 1ðg1Þ; . . . ; f sðgsÞÞ ¼ PðF1ðG1Þ 6 f 1ðg1Þ; . . . ; FsðGsÞ 6 f sðgsÞÞ ð1Þ
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Fig. 1. The Venn diagram for the cases of (a) mutually exclusive failure modes and
(b) when none of the three failure modes is mutually exclusive.
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