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Cerebral small vessel disease (SVD) is a heterogeneous group of pathological disorders that affect the small ves-
sels of the brain and are an important cause of cognitive impairment. The ischaemic consequences of this disease
can be detected using MRI, and include white matter hyperintensities (WMH), lacunar infarcts and
microhaemorrhages. The relationship between SVD disease severity, as defined by WMH volume, in sporadic
age-related SVD and cortical thickness has not been well defined. However, regional cortical thickness change
would be expected due to associated phenomena such as underlying ischaemic white matter damage, and the
observation that widespread cortical thinning is observed in the related genetic condition CADASIL (Righart
et al., 2013).
UsingMRI data, we have developed a semi-automated processing pipeline for the anatomical analysis of individ-
uals with cerebral small vessel disease and applied it cross-sectionally to 121 subjects diagnosed with this con-
dition. Using a novel combined automated white matter lesion segmentation algorithm and lesion repair step,
highly accurate warping to a group average template was achieved. The volume of white matter affected by
WMHwas calculated, and used as a covariate of interest in a voxel-basedmorphometry and voxel-based cortical
thickness analysis. Additionally, Gaussian Process Regression (GPR) was used to assess if the severity of SVD,
measured by WMH volume, could be predicted from the morphometry and cortical thickness measures.
We found significant (Family Wise Error corrected p b 0.05) volumetric decline with increasing lesion load pre-
dominately in the parietal lobes, anterior insula and caudate nuclei bilaterally. Widespread significant cortical
thinning was found bilaterally in the dorsolateral prefrontal, parietal and posterio-superior temporal cortices.
These represent distinctive patterns of cortical thinning and volumetric reduction compared to ageing effects
in the same cohort, which exhibited greater changes in the occipital and sensorimotor cortices. Using GPR, the
absolute WMH volume could be significantly estimated from the grey matter density and cortical thickness
maps (Pearson3s coefficients 0.80 and 0.75 respectively).
We demonstrate that SVD severity is associatedwith regional cortical thinning. Furthermore a quantitativemea-
sure of SVD severity (WMH volume) can be predicted from greymatter measures, supporting an association be-
tween white and grey matter damage. The pattern of cortical thinning and volumetric decline is distinctive for
SVD severity compared to ageing. These results, taken together, suggest that there is a phenotypic pattern of at-
rophy associated with SVD severity.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Cerebral small vessel disease (SVD) refers to a heterogeneous group
of pathological disorders that, by definition, affect the small vessels of
the brain (Pantoni, 2010). They are characterised by typical radiological
changes on MRI including white matter hyperintensities (WMH),

lacunar infarcts (LI) and cerebral microbleeds (Gouw et al., 2011). It is
a highly prevalent disease that increases with age (De Leeuw et al.,
2001). SVD is part of a clinical spectrum that ranges from asymptomatic
disease through to extensiveWMHand LI in symptomatic patients with
stroke and vascular dementia (Patel and Markus, 2011; Pantoni, 2010).
There is increasing evidence of more subtle morbidities in those with
apparently asymptomatic disease. These include cognitive impairment
(Lawrence et al., 2013; Pantoni et al., 2007; Prins et al., 2005), gait dis-
turbance (de Laat et al., 2012; de Laat et al., 2010) and depression
(Poggesi et al., 2011).
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Cognitive impairment in SVD has been shown to associate with a
number of different MRI features of SVD including lacunar infarcts,
WMH, and less consistentlymicrobleeds (Patel &Markus, 2011); recent
evidence suggest that these pathologies are mediated via disruption of
complex cortical–subcortical networks (Lawrence et al., 2013). An addi-
tional consistent feature associatedwith cognition impairment in SVD is
brain atrophy; whether this occurs due to primary cortical SVD pathol-
ogy or secondary towhitematter changes. Additionally, themechanism
leading to cognitive impairment remains poorly understood. In this
study we used a variety of image analysis techniques to further charac-
terise the pattern of cortical atrophy in SVD and define the relationship
between grey matter changes and WMH.

1.1. Cortical atrophy in cerebral small vessel disease

Whole brain atrophy is a widely reported feature of SVD (Nitkunan
et al., 2011; Jokinen et al., 2012), and has been proposed as a simple sur-
rogate of disease progression (Patel and Markus, 2011). However, this
measure provides no spatial information regarding the pattern of corti-
cal loss that gives rise to volumetric changes. Furthermore, whole brain
atrophy is a feature of a diverse range of potentially overlapping neuro-
logical disorders (Fox and Schott, 2004; Sluimer et al., 2010; Schott et al.,
2010) as well as in normal ageing (Fjell et al., 2009) and whole brain
atrophy measurements fail to distinguish between these different pa-
thologies (Smith et al., 2002). However, characterising the spatial distri-
bution of atrophy may define phenotypic specific patterns (Fox and
Schott, 2004), providing a more sensitive and specific means of disease
differentiation. Voxel basedmorphometry (VBM) is a widely used tech-
nique that characterises voxel-wise changes in volumewithin a statisti-
cally robust framework (Ashburner and Friston, 2000) and provides
insight into spatial patterns that contribute to changes in whole brain
volumes (Rohrer et al., 2010). Previous work in SVD using VBM (Raji
et al., 2012; Wen et al., 2006) found a correlation between WMH vol-
ume (WMHV) and grey matter volume in the dorsolateral prefrontal
cortex and posterior portions of the superior and middle temporal
gyri. Further evidence for the link between WMH and grey matter
changes is found in CADASIL, an autosomal dominant early onset form
of SVD, where selective anterior temporal grey matter atrophy has
been associated with increasing WMHV (Rossi Espagnet et al., 2012).
This work seeks to further these observations by characterising the pat-
tern of GM changes associated withWMHV in sporadic SVD, and differ-
entiate related age associated changes.

1.2. Cortical thickness in cerebral small vessel disease

Cortical thickness (CT) studies in SVD aremore limited, butmay be a
promising area, as several pathologies present in SVDwould be expect-
ed to impact on these measurements. These include disrupted white
matter connections due to lacunar infarcts (Duering et al., 2012) or
WMH, and the presence of cortical microinfarcts (Smith et al., 2012).
Previous attempts to characterise the association between CT and
WMHV (van Velsen et al., 2013; de Laat et al., 2012; Reid et al., 2010)
in cerebral SVD have yielded few significant results at a global level.
However, sub-group analysis by age has indicated a significant negative
correlation between WMHV and cortical thickness particularly in the
primary auditory cortex (BA 44–45), ventromedial prefrontal cortex
(BA10), cingulate gyrus and Broca3s area (Reid et al., 2010). The absence
of CT changes using whole group analysis techniques may be due, in
part, to the region of interest (ROI) based approaches adopted by
these previous studies. In particular, these studies averaged CT mea-
surements over automatically parcellated a priori regions for which
the regional sizes and boundaries have high inter-individual variability
when examined histologically (Amunts et al., 2000), resulting in a po-
tential reduction in statistical and spatial sensitivity. Previous studies
have also applied surface-based approaches that fit a deformable

surface model to an individual brain allowing computation of cortical
thickness (Fischl andDale, 2000). Thesemodels rely on accurate surface
extraction and have been reliably generated in healthy control subjects.
However, difficulties arise in fitting deformed surfaces to deep sulci,
buried cortex or abnormally structured brains (Hutton et al., 2008) po-
tentially contributing to the lack of observed findings in SVD using this
technique.

Voxel-based cortical thickness (VBCT) (Hutton et al., 2008) is a tool-
box implemented in SPM. It uses a voxel-wise layer-growing technique
on tissue segmentations in native space to produce a scalar measure of
cortical thickness at each voxel location. This enables voxel-wise statis-
tical analysis of cortical thickness using a standard SPM framework and
has been previously used to study ageing effects on the cortex (Hutton
et al., 2009). This VBCT analysis is a complementary technique to statis-
tical analysis of modulated grey matter in standard VBM analysis, and
has been shown to provide a more sensitive measure of healthy age-
related grey matter changes (Hutton et al., 2009) due to the fact that
cortical folding and surface area have less influence on CT measure-
ments compared to VBM. Whilst it should be noted that voxel-wise
methods do not completely circumvent the problems relating to inter-
individual anatomical variance at the voxel level due to their reliance
on normalisation procedures, the use of newer diffeomorphic-warping
techniques (Ashburner and Friston, 2011) with higher anatomical pre-
cision (Klein et al., 2009) can allow for less smoothing of the data and
therefore improve the sensitivity to detect localised changes in brain
structure compared to ROI based approaches.

1.3. Machine learning in cerebral small vessel disease

Machine learning techniques are multivariate methods that allow
spatial patterns in high dimensional, complex data to be determined.
Analysis of these learned patterns is usually performed by classification
or regression algorithmswith these techniques attempting to generalise
or provide predictions from unseen data. Classifiers partition the data
into two or more groups and have been clinically used for many tasks
such as predicting language outcome after stroke from fMRI data
(Saur et al., 2010), diagnosing dementia syndromes (Klöppel et al.,
2008) and predicting tumour grade (Zacharaki et al., 2009). Regression
methods aim to predict a continuous variable, such as clinical score,
from the features within the dataset and have been previously used
to predict variables such as age (Franke et al., 2010) and MMSE
(Stonnington et al., 2010) fromMRI data. Predictive regressionmethods
provide additional anatomical information by determining the spatial
features that significantly contribute to the predictions. Here we use a
probabilistic regression technique known as Gaussian Process Model
Regression (GPR), a Bayesian supervised machine-learning technique
for multivariate non-linear regression (Rasmussen, 2006). This tech-
nique has been successfully applied to predict recovery of speech func-
tion following stroke based on MRI lesion data (Hope et al., 2013). We
use it as a complementary multivariate anatomical method to standard
univariate VBM and VBCT analyses to better characterise the grey mat-
ter correlates of WMH and provide the foundations for future clinical
prediction models in SVD.

1.4. Hypotheses

This work addresses four hypotheses based on the observations
frompreviouswork that, taken together, aim to clarify and define a phe-
notypic specific pattern of grey matter atrophy (Fox and Schott, 2004)
associated with increasing cerebral SVD severity. Our hypotheses are
that there is a relationship between SVD severity and volumetric
whole brain changes that can be detected using VBM (Raji et al., 2012;
Wen et al., 2006). There is a significant inverse association between
SVD severity and regional cortical thickness, which can be demonstrat-
ed by employing voxel-wise techniques for measuring and analysing
cortical thickness measures (Hutton et al., 2008). Furthermore, the
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