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Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evi-
dence and insights showing that altered brain functional networks are associated with neurological illnesses
such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls
would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose,
group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted
brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a net-
workmodel and high noise levels in neuroimaging data.We are still in the early stage ofmethod development as
highlighted by Varoquaux and Craddock (2013) that “there is currently no unique solution, but a spectrum of re-
lated methods and analytical strategies” to learn and compare brain connectivity. In practice the important issue
of how to choose several critical parameters in estimating a network, such as what association measure to use
andwhat is the sparsity of the estimated network, has not been carefully addressed, largely because the answers
are unknown yet. For example, even though the choice of tuningparameters inmodel estimation has been exten-
sively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation
may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such pa-
rametersmay lead to extremely low-powered tests. Herewe develop highly adaptive tests to detect group differ-
ences in brain connectivity while accounting for unknown optimal choices of some tuning parameters.
The proposed tests combine statistical evidence against a null hypothesis frommultiple sources across a range of
plausible tuning parameter values reflecting uncertaintywith the unknown truth. These highly adaptive tests are
not only easy to use, but also high-powered robustly across various scenarios. The usage and advantages of these
novel tests are demonstrated on an Alzheimer's disease dataset and simulated data.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Previous studies have shown that neurological illnesses such as
Alzheimer's disease and autism are related to altered brain functional
networks, or functional connectivity, among distinct and distant brain
regions (Greicius et al., 2004; Supekar et al., 2008). However, group-
level statistical inference on functional connectivity is both challenging
and necessary due to the high dimensionality of the parameters in a

network model and the high noise level in neuroimaging data. Even
though recent advances in neuroimaging technologies, such as rs-
fMRI, offer great potentials for studying brain functional networks
(Biswal, 2012), most statistical methods are for point estimation while
only few exist in drawing inference for group comparisons in brain net-
works (Varoquaux and Craddock, 2013). In particular, many studies ex-
amined possible differences between two covariance or precision
matrix estimates; however, whether there were any genuine differences
between the corresponding population matrices was never or inade-
quately addressed. Without rigorous statistical testing, it is unknown
whether any estimated network differences are simply due to estimation
errors. In practice, we recommend to first test for differences of the net-
works between two groups; only if it is confirmed that the differences
exist, then proceed to the next step to examine how they are different,
possibly in an exploratory analysis.

Functional brain connectivity can be described as a network or graph
(Bullmore and Sporns, 2009; Habeck and Moeller, 2011; He and Evans,
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2010), inwhich a set of nodes are linked by edges. Nodes stand for brain
regions, and brain connectivity (or edges) refer to pairwise associations
between every two nodes (Varoquaux and Craddock, 2013). Yet, what
measure of association should be used for the weights of network
edges remains to be an open question. Currently the two most popular
choices are Pearson's correlations and partial correlations. A correlation
represents the marginal relationship between two brain regions, while
a partial correlation quantifies the conditional association between the
two, conditioning on other brain regions' activities. Pearson's (full or
marginal) correlations have been adopted in many functional connec-
tivity studies (Azari et al., 1992; Horwitz et al., 1987; Kim et al., 2014;
Stam et al., 2007; Supekar et al., 2008). Partial correlations also have
been advocated (Marrelec et al., 2006; Salvador et al., 2005; Smith
et al., 2011), especially when one is interested in seeking conditional in-
dependence between any two regions. However, as shown by Kim et al.
(2015), the choice of the associationmeasurewould influence statistical
power in subsequently detecting group-level network differences.
Moreover, since brain networks can be reasonably assumed to be
sparse, they can be thus estimated via regularized sparse covariance
or precision matrices, which however pose some challenges in the
choice of a suitable regularization or tuning parameter. In addition,
there may be other tuning parameters to be determined in an analysis.
In general, the choice of such parameters may be difficult, and at the
same time critical. We propose highly adaptive testing procedures
that automatically search over and thus take account of these parameter
values to maintain high power across various situations.

Kim et al. (2014) reviewed and compared many statistical methods,
and concluded that the Network Based Statistic (NBS) (Zalesky et al.,
2012) and an adaptive sum of powered score (aSPU) test (Pan et al.,
2014) showed great performance, often complementary to each other,
for testing group differences in brain functional connectivity. In particu-
lar, mass-univariate testing on each edge and testing on some network
summary statistics is in general low-powered: for the former, in addi-
tion to possibly small differences on the edges, the stringent significance
level after multiple testing adjustment is often too high to achieve; for
the latter, it largely depends on the choice of the network summary sta-
tistics, which may be too mildly altered to be detected. NBS was origi-
nally developed to identify changed subnetworks in the neuroimaging
research, but could be employed for global testing as considered here.
By assuming that changed network edges form subnetworks, NBS can
be potentially powerful when the assumption holds. However, since it
is based on mass univariate testing to detect altered edges, it may
miss some edges and thus connected subnetworks, leading to loss of
power. As an alternative, the aSPU test does not impose any assumption
on the structure of altered edges or networks while data-adaptively ac-
cumulating evidence against a null hypothesis, and thus yields high
power under various situations. These are two representative and
state-of-the-art tests we consider here. In particular, we propose two
versions of highly adaptive aSPU and NBS tests respectively. The pro-
posed tests utilize and data-adaptively choose multiple parameter
values reflecting uncertainty with unknown true data structures,
while adjusting formultiple testing automatically. At the end, we obtain
two adaptive tests that can maintain high power more robustly across
many situations; being data-adaptive to unknown true association pat-
terns, the proposed tests are robust in the sense that they can achieve
high power across many situations, in contrast to a possibly high
powered test in only one or few situations that may lose much power
in many other situations. We will apply the proposed adaptive tests to
simulated data and an Alzheimer's Disease Neuroimaging Initiative
(ADNI) dataset.

The remainder of the paper is organized as follows. We first review
sparse estimation of brain connectivity, then present highly adaptive ver-
sions of aSPU and NBS in Section 2. Section 3 is devoted to the analysis of
ADNI data. In Section 4, we conduct simulation studies with realistic set-
ups mimicking the ADNI data. We end with some discussions on a few
technical aspects and comparisons with the literature in Section 5.

2. Methods

2.1. Data and notation

We focus on a case–control study design with covariates. Suppose
there are n unrelated subjects, either healthy or having a disease.

We denote a group indicator Yl =0 for controls, Yl =1 for cases, and
Zi = (Zi1,…, Zil)′ for the covariates for subject i. We consider N brain re-
gions of interests (ROIs), which define the nodes in a network or graph.
For each node, fMRI BOLD signals are measured at t = 1,2,…,M time
points. The BOLD signals from N nodes at time point t, Dt = (Dt1, ····,
DtN)′, are assumed to be distributed as multivariate Gaussian N(μ, Σ)
with themeanvector μ∈ℝN and thepositive definite covariancematrixΣ.

The next step is to estimate the pairwise association between any two
nodes. Thismeasure is stored in a symmetricN×N adjacencymatrixwith
its (i,j)th element as the association between the ith and jth nodes
(Bullmore and Sporns, 2009). Hence a total of k= N × (N− 1)/2 unique
pairwise associations are estimated for each subject, and these k continu-
ous measures are called brain connectivity or network edges to be used
for testing group differences. In our study, both Pearson's correlations
and partial correlations were considered. As usual, the correlations (or
partial correlations) are normalized via Fisher's z-transformation to gen-
erate subject i's brain connectivity, Xi = (Xi1,⋯, Xik)′. Fisher's transforma-
tion is used to alleviate the effects of skewed distributions and outliers,
which may negatively influence the power of a subsequent test.

In the following,we usematrix notation: Yn × 1 as a vector for disease
indicators, Xn × k as a matrix of pairwise associations between nodes
(with each element as a z-transformed correlation or partial correlation),
and Zn × l as a covariate matrix.

2.2. Estimating covariance and precision matrices via graphical lasso

Building on thework of Banerjee et al. (2008), Friedman et al. (2008)
proposed a graphical lasso (glasso) algorithm to estimate sparse (or
non-sparse) covariance and precision matrices, given M observations
of dimension N, which are distributed as multivariate Gaussian N (μ, Σ).
Let subject i have a possibly subject-specific true precision matrix Θi =
Σi
−1, and Si be its empirical covariance matrix of the BOLD signals ex-

tracted from N nodes; the problem is to maximize the penalized log-
likelihood,

LP;i Θi;λð Þ ¼ Li Θið Þ−P Θi;λð Þ ¼ log det Θið Þ−tr SiΘið Þ−λi Θik k1

over the semi-positive definite Θi, where tr denotes the trace.
‖Θi‖1 = ∑p ≠ q|θi,pq| is the L1 norm for non-diagonal elements;
λi ≥ 0 is a regularization parameter to be determined. The graphical

lasso finds the estimate, satisfying Θ̂i ¼ Θ̂i iðλiÞ ¼ arg maxΘi
LP;iðΘi; λ̂iÞ:

Here Θ̂i is a function of λi, from which we also obtain a regularized

estimate for the covariance matrix Σ̂i ¼ Θ̂
−1
i . Full correlations and partial

correlations can be estimated with Σ̂i and Θ̂i respectively.
In this paper, the graphical lasso was employed to estimate brain

connectivity at various sparsity levels. Denote c as the connection den-
sity (or proportion of nonzero elements) in a precision matrix estimate

Θ̂i. Using a grid search, λi can be chosen to generate the precisionmatrix

estimate at a predefined connection density c, namely Θ̂iðcÞ ¼ Θ̂iðλiðcÞÞ.
Again Σ̂iðcÞ is obtained by inverting Θ̂iðcÞ; we note that, c is the connec-
tion density of the precision matrix estimate, not of the corresponding
covariance matrix estimate.

For testing between-group differences in brain connectivity, recent
studies have chosen λi at the group level so that each group should
have the same or similar connection density in their estimated precision
matrices (Huang et al., 2010; Stam et al., 2007; Supekar et al., 2008).
Hence, at a low estimated connection density, only strong connectivity
would show up as non-zeros in the resulting estimates, based on
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