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a b s t r a c t

In this study a methodology is presented for effective analysis of dynamic systems with stochastic mate-
rial properties. The concept of dynamic mean and variability response functions, recently established for
linear stochastic single degree of freedom oscillators, is extended to general finite element systems such
as statically indeterminate beam/frame structures and plane stress problems, leading to closed form
integral expressions for their dynamic mean and variability response. The integrand of these integral
expressions involves the spectral density function of the uncertain material properties and the so called
dynamic mean and variability response functions respectively, which are assumed to be deterministic, i.e.
independent of the power spectrum as well as the marginal pdf of the uncertain parameters. A finite
element method-based fast Monte Carlo simulation procedure is used for the accurate and efficient
numerical evaluation of these functions. In order to demonstrate the validity of the proposed procedure,
the results obtained using the aforementioned integral expressions are compared to brute-force Monte
Carlo simulation. As a further validation of the assumption of independence of the variability response
function to the stochastic parameters of the problem, the concept of the generalized variability response
function was applied and compared to the steady state dynamic variability response function. The meth-
odology is applied in a dynamically loaded statically indeterminate beam/frame structure and a plane
stress problem. The dynamic mean and variability response functions, once established, can be used to
perform sensitivity/parametric analyses with respect to various probabilistic characteristics involved in
the problem (i.e., correlation distance, standard deviation) and to establish realizable upper bounds on
the dynamic mean and variance of the response, at practically no additional computational cost.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, multiple methodologies based on perturbation/
expansion [1,2], spectral Galerkin approximations [3] or costly
Monte Carlo methods [1,4–6] have been developed to deal with
random/uncertain phenomena in steady state stochastic structural
analysis and extended to dynamic stochastic analysis in a straight-
forward manner [7,8], along with procedures to improve their effi-
ciency both in terms of accuracy [9–12] as well as computational
performance [13–15]. A probability density evolution method
was proposed in [16,17] in an effort to approximate the time vary-
ing probability distribution function (pdf) of the response of sto-
chastic systems using the principle of preservation of probability.
Along these lines, some other approaches implement approximate
Wiener path integral solution schemes [18]. However these

approaches have been mainly implemented in single degree of
freedom oscillators or small illustrative academic systems due to
increased computational cost. In all above cases, prior knowledge
of the correlation properties and the marginal pdf of the random
fields characterizing system uncertainties is essential for accurate
estimates of the system’s response. In the frequent case of insuffi-
cient experimental data, analysts are forced to resort to sensitivity/
parametric yet cost inefficient analyses. Furthermore, such analy-
ses do not provide any information on the mechanisms that affect
response variability, or bounds of the response. In addition to the
aforementioned approaches, a relatively small number of studies
have dealt with the dynamic propagation of system uncertainties,
most of them reducing the stochastic dynamic PDE’s to a linear
random eigenvalue problem [19,20].

In order to effectively resolve aforementioned issues, a proposi-
tion has been made through the concept of Dynamic Variability
Response Function (DVRF) in [21], which was a straightforward
generalization of the currently classical VRF proposed in the late
1980s [22] along with different aspects and extensions [23,24].
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DVRF involves information regarding deterministic variables of the
problem and the standard deviation of the field modeling the ran-
dom system parameters. In that work, closed form integral expres-
sions involving DVRF and the spectral density function of the
stochastic field, were suggested for the computation of the
dynamic variance of the response displacement as follows:

Var½uðtÞ� ¼
Z 1

�1
DVRFðt;j;rff ÞSff ðjÞdj ð1Þ

An additional expression involving a Dynamic Mean Response
Function (DMRF) for the system dynamic mean response was also
proposed in that work. This approach was formulated for linear
statically determinate single degree of freedom stochastic oscilla-
tors under dynamic excitations where it was demonstrated that
the integral form expressions for the dynamic mean and variance
can be used to effectively compute the first and second order statis-
tics of the transient system response with reasonable accuracy,
together with time dependent spectral-distribution-free upper
bounds. They also provide an insight into the mechanisms control-
ling the uncertainty propagation with respect to both space and
time and in particular the mean and variability time histories of
the stochastic system dynamic response. Furthermore, once the
DMRF and DVRF are established, sensitivity analyses with respect
to various probabilistic parameters such as correlation distances
and standard deviation were performed at a very small additional
computational cost.

Based on the aforementioned recent development, closed form
integral expressions in the form of Eq. (1) are proposed in the pres-
ent work for the mean and variance of the dynamic response of
statically indeterminate beam/frame structures and then extended
to more general stochastic finite element systems (i.e. plane stress
problems) under dynamic excitations. In this case DVRF and DMRF
are vectors comprised of a DMRF and DVRF for each degree of free-
dom of the FE system. A general so-called Dynamic FEM fast Monte
Carlo simulation (DFEM-FMCS) is provided for the accurate and
efficient evaluation of DVRF and DMRF for stochastic FE systems.
Numerical results are presented, demonstrating that, as in the case
of classical VRFs, as well as in the case of DMRF and DVRF for single
degree of freedom stochastic oscillators [21], the DVRF and DMRF
matrices appear to be independent of the functional form of the
power spectral density function Sff(j) and appear to be marginally
dependent on the pdf of the field modeling the uncertain system
parameter. It is reminded that the existence of VRF has been
proven only in the case of statically determinate structures under
static loading [22,25]. In all other cases this existence had to be
conjectured and the validity of this conjecture was demonstrated
through comparisons of the results obtained from Eq. (1) with
brute force MCS. The validity of this conjecture is further boosted
in this work by comparing steady state DVRF with respective
Generalized VRF [26] for a statically indeterminate frame structure.
GVRF involves the computation of different VRFs for corresponding
combinations of different marginal pdfs and power spectra nd was
developed in order to further test the validity of the existence of a
VRF which is almost independent of the stochastic parameters of
the problem. It should be mentioned here that the VRF concept
was recently extended in [29] for structures with non-linear mate-
rial properties where a closed form analytic expression of VRF
revealed the clear dependence of the integral form of Eq. (1) on
the standard deviation as well as higher order Power spectra of
f(x). Finally, realizable upper bounds of the mean and dynamic
system response are evaluated.

2. Time-history analysis of stochastic finite element systems

Without loss of generality consider the linear stochastic FE
system of Fig. 1 which is a fixed–fixed beam/frame structure. The

inverse of the elastic modulus is assumed to vary randomly along
its length according to the following expression:

1
EðxÞ ¼ F0ð1þ f ðxÞÞ; ð2Þ

where E is the elastic modulus, F0 is the mean value of the inverse of
E, and f(x) is a zero-mean homogeneous stochastic field modeling
the variation of 1/E around its mean value.

For the derivation of the deterministic system dynamic
response the trivial second-order differential equation for the dis-
cretized FE dynamic system equilibrium is as follows:

M€uðtÞ þ C _uðtÞ þ KuðtÞ ¼ PðtÞ ð3Þ

where M is the mass matrix of the discretized FE system, C is its
damping matrix, K is its stiffness matrix and P(t) is its loading vec-
tor. At last, u(t) is the time-history of the displacement vector of the
system, providing information about the response of each node of
the FE mesh, _uðtÞ is the first order time-derivative and €uðtÞ is the
second order time-derivative of u(t).

Direct integration of Eq. (3) can be performed using i.e. a New-
mark scheme of the following form:

tþDtR̂¼ tþDtRþMða0
tUþa1

t _Uþa2
t €UÞþCða1

tUþ a4
t _Uþa5

t €UÞ ð4Þ

where a0 ¼ 1
aDt2 ; a1 ¼ 1

aDt ; a2 ¼ 1
2a� 1; a4 ¼ Dtð1� dÞ; a5 ¼ dDt; a6 ¼

Dtð1� dÞ; a7 ¼ Dt. After choosing a time step Dt parameters a and
d are selected under the limitations d P 0.50 and a P
0.25(0.5 + d)2. After initialization of 0U; 0 _U; and 0 €U, the displace-
ments at time t + Dt are calculated solving the following linear sys-
tem of equations

K̂tþDtU ¼ tþDtR̂ ð5Þ

where K̂ is the effective stiffness matrix given by

K̂ ¼ Kþ a0Mþ a1C ð6Þ

Finally accelerations and velocities at time t + Dt accrue from the
following equations:

tþDt €U ¼ a0ðtþDtU� tUÞ � at
1

_U� at
2

€U ð7Þ
tþDt _U ¼ t _Uþ a6

t €Uþ atþDt
7

€U ð8Þ

Matrices R̂ and K̂ in Eqs. (5) and (6) and consequently vectors U; _U
and €U are random due to the variation of E(x) in Eq. (2). Thus, the
solution of Eq. (5) requires the implementation of some stochastic
methodology in order to invert the stochastic operator K̂ in at each
time step and predict the stochastic dynamic response of the FE
system.

Fig. 1. Geometry and loading of the fixed–fixed frame discretized with 60 beam
elements.
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