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Computer-aided diagnosis of Alzheimer3s disease (AD) is a rapidly developing field of neuroimaging with strong
potential to be used in practice. In this context, assessment of models3 robustness to noise and imaging protocol
differences together with post-processing and tuning strategies are key tasks to be addressed in order to move
towards successful clinical applications. In this study, we investigated the efficacy of Random Forest classifiers
trained using different structural MRI measures, with and without neuroanatomical constraints in the detection
and prediction of AD in terms of accuracy and between-cohort robustness.
From The ADNI database, 185 AD, and 225 healthy controls (HC) were randomly split into training and testing
datasets. 165 subjects with mild cognitive impairment (MCI) were distributed according to the month of
conversion to dementia (4-year follow-up). Structural 1.5-TMRI-scanswere processed using Freesurfer segmen-
tation and cortical reconstruction. Using the resulting output, AD/HC classifiers were trained. Training included
model tuning and performance assessment using out-of-bag estimation. Subsequently the classifiers were vali-
dated on the AD/HC test set and for the ability to predict MCI-to-AD conversion.Models3 between-cohort robust-
ness was additionally assessed using the AddNeuroMed dataset acquired with harmonized clinical and imaging
protocols.
In the ADNI set, the best AD/HC sensitivity/specificity (88.6%/92.0%— test set) was achieved by combining corti-
cal thickness and volumetric measures. The Random Forest model resulted in significantly higher accuracy com-
pared to the reference classifier (linear Support Vector Machine). The models trained using parcelled and high-
dimensional (HD) input demonstrated equivalent performance, but the former was more effective in terms of
computation/memory and time costs. The sensitivity/specificity for detecting MCI-to-AD conversion (but not
AD/HC classification performance) was further improved from79.5%/75%–83.3%/81.3% by a combination ofmor-
phometricmeasurementswith ApoE-genotype and demographics (age, sex, education).When applied to the in-
dependent AddNeuroMed cohort, the best ADNI models produced equivalent performance without substantial
accuracy drop, suggesting good robustness sufficient for future clinical implementation.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction

The application of pattern recognition approaches to neuroimag-
ing offers the potential for diagnostically relevant analysis tech-
niques, in particular for magnetic resonance imaging (MRI), which
has already been demonstrated to provide relevant support in the
diagnosis of Alzheimer3s disease (AD) (O3Brien, 2007). A large num-
ber of studies addressing the use of pattern recognition methods in
image-based detection of AD have been published in recent years
(Gray et al., 2013; Liu et al., 2012; Cuingnet et al., 2011; Klöppel
et al., 2008).

The advantage of these methods over visual assessment by a
medical expert is that they are fully automated and therefore unbi-
ased towards humanmistakes and can be incorporated into comput-
erized medical decision-support systems, a growing field with
especially fast research progress in radiology (Stivaros et al., 2010;
Belle et al., 2013).

However, such methods do have limitations. Our previous work
demonstrated that pattern recognition methods are sensitive to
MR-protocol differences (Westman et al., 2011; Lebedev et al.,
2013) and that a harmonization step is therefore required. Another
relevant issue pertains to the comparison of high-dimensional imag-
ing data input versus measurements extracted by neuroanatomical
parcellation atlases, with the areas separated according to functional
and histological maps of the human cortex (for simplicity, we will
use the term “parcelled data”). Parcelled input has some obvious
advantages in terms of lower computation, memory cost and
processing time. However, it is possible that it could be biased by
these landmarks. Normalized high-dimensional measurements
without parcellation, in contrast, are unbiased, but at the same
time are more difficult to handle using multivariate and machine
learning approaches due to computation and memory costs. More-
over, situations where the number of measurements is much larger
than the number of observations (p ≫ n) are often associated with
the so-called “curse of dimensionality” (Bellman, 1961). This refers
to a number of events that happen when dealing with high-
dimensional input (due to increasing sparsity of the data), signifi-
cantly hampering modeling efficacy. Such cases often require a
preparatory step of dimensionality reduction.

Random Forest (RF) is an ensemble machine learning algorithm,
which is best defined as a “combination of tree predictors such that
each tree depends on the values of a random vector sampled inde-
pendently and with the same distribution for all trees in the forest”
(Breiman, 2001).

In many applications this algorithm produces one of the best
accuracies to date and has important advantages over other tech-
niques in terms of ability to handle highly non-linear biological
data, robustness to noise, tuning simplicity (compared to other
ensemble learning algorithms) and opportunity for efficient parallel
processing (De Bruyn et al., 2013; Caruana and Niculescu-Mizil,
2006; Menze et al., 2009). These factors also make RF an ideal candi-
date for handling high-dimensional problems, where the number of
features is often redundant. Although RF can itself be considered as
an effective feature selection algorithm, several approaches for fea-
ture set reduction within and outside the context of RF have been
proposed to further improve its performance (Tuv et al., 2009). In
the current study, we use recursive feature elimination (Kuhn,
2012a) to optimize the models.

Our previous work revealed that parcelled cortical thickness
together with subcortical volumetric measurements (used as an
input to a multivariate model) resulted in the best performance,
compared to other modalities (Westman et al., 2013). Here, we
aimed not only to assess the accuracies of the classifiers trained
with different morphometric modalities, but also to analyze the
impact of dimensionality, parcellation strategy on models3 accuracy,
computation/memory/time costs of model training and feature

selection. Finally, previous studies have successfully employed
pattern recognition techniques to classify MRI images from different
cohorts only within the combined sets (Westman et al., 2011;
Lebedev et al., 2014). The present study was planned as one of the
first to assess classifiers3 between-cohort robustness in two indepen-
dent large-scale datasets.

We hypothesized that with the use of more disease-specific
parcellation atlases (in this case, when the measurements are
extracted from the predefined regions, known to be affected by
Alzheimer3s disease), it would be possible to achieve AD-detection
accuracy equivalent to that of the models trained with high-
dimensional input without parcellation with shorter computational
time. In addition, we hypothesized that it is possible to achieve
good between-cohort generalization of the models if the MRI proto-
cols are harmonized.

2. Methods

2.1. Subjects

The study was based on two cohorts. The first set of clinical and
MRI data was obtained from the Alzheimer3s Disease Neuroimaging
Initiative (ADNI-1) database (http://adni.loni.ucla.edu). In short,
ADNI-1 includes more than 800 subjects with up to 5 years of annu-
al follow-up with comprehensive clinical, neuropsychological,
imaging and laboratory evaluations, performed at the 57 special-
ized ADNI sites in North America. For details, see Aisen et al.
(2010) and ADNI-Core (2011). The present cross-sectional study is
focused on baseline imaging data and longitudinal information
regarding conversion to dementia.

In total, 3D T1 baseline brain scans from 809 subjects passed
our image quality control criteria. From this group we selected
575 subjects – 185 AD, 225 healthy controls (HC) and 165 patients
with mild cognitive impairment (MCI) and long term follow up infor-
mation – who met the inclusion criteria (see below).

In order to test the impact of different cohorts, we additionally
included 321 subjects (AD 107, 114 MCI and 100 HCs) from the
AddNeuroMed study with harmonized clinical and imaging protocols
(http://www.innomed-addneuromed.com/). The standardized study har-
monization workflow (described in previous publications) particularly
included careful MR protocol alignment evaluated by phantom scan-
ning and careful quality control (Simmons et al., 2011).

2.2. Inclusion criteria and clinical assessment procedures

All ADpatientsmet theNINCDS/ADRDA criteria for probable AD, had
mild level of dementia, defined as the Mini-Mental State Examination
(MMSE) score between 20 and 26, and had the Clinical Dementia Rating
(CDR) score of 1.0.

Inclusion criteria for MCI were: 1) MMSE score between 24 and 30,
2) memory complaints and objective memory impairment measured
by the Logical Memory II subscale of theWechsler Memory Scale (edu-
cation adjusted), 3) CDR of 0.5, 4) absence of significant levels of impair-
ment in other cognitive domains, 5) preserved activities of daily living,
and 6) absence of dementia. MCI converters had to meet the criteria
for Alzheimer3s disease during at least two sequential evaluations
(e.g., at 24 and 36 month follow-ups). Those MCI subjects who did not
have the required follow-up information or had their diagnoses changed
back from AD to MCI (or to HC) were excluded (n = 232 out of 397). To
considerMCI subjects as beingnon-converterswe required that their clin-
ical status remained stable for at least 3 years of follow-up.

Controls (general inclusion/exclusion criteria): 1) MMSE scores
between 28 and 30, 2) CDR of 0, and 3) they did not meet the criteria
for clinical depression at baseline, MCI or dementia within 3 years of
follow-up. One HC subject (ID # 0223) was excluded from the sample
due to conversion to AD at follow-up. One AD subject (ID # 0805) was
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