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a b s t r a c t

In this paper we deal with the probability and physical consistency of random variables and models used
in engineering design. We analyze and discuss the conditions for a model to be consistent from two dif-
ferent points of view: probabilistic and physical (dimensional analysis). The first leads us to the concept
of probabilistically consistent models, which arises when the joint distributions of all variables are
required. This implies that relations among the variables must be respected by densities and resulting
moments. In particular the most common linear, product and quotient relations, which are physically jus-
tified, must be especially considered. Similarly, stability with respect to minimum or maximum opera-
tions and consistency with respect to extremes (maxima and minima) arises in practice. From the
dimensional analysis point of view, some models are demonstrated to be inconsistent. In particular,
log-normal and chi-squared models are shown to be non adequate for location or location-scale variables.
The problem of building compatible models based on conditional distributions and regression functions
is analyzed too. It is shown that incompatible models can be easily obtained if a consistency analysis is
not performed. All these and other problems are discussed and some models in the literature are ana-
lyzed from these two points of view. When some families fail to satisfy the desired properties, alternative
models are provided. Finally, some simple examples and conclusions are given to summarize the analysis.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

When working with statistical models in engineering and other
areas we have to face different ways of solving the problems and
different assumptions, data and models. Though most of them are
satisfactory, we also encounter cases in which important mistakes
are made. The main cause for this situation is that modeling in Engi-
neering is a difficult and interdisciplinary task and requires knowl-
edge from many and very different areas. This collection of errors
and mistakes, from which nobody is free of, has motivated this paper.
Our main aim is to point out some of the errors encountered in prac-
tice and give orientations on how to avoid them. This is not an easy
task, but we want to contribute with our sand grain and to motivate
other researchers to join our adventure. To clarify what we have in
mind, we start by including a short list of examples below.

Example 1.1 (Inadequate formula). Our first example deals with
the validity of some formulas. Some authors suggest to evaluate
the gas emissions produced in a road by the formula:

E ¼ C1 þ C2av; ð1Þ

where C1 ¼ 0:0039; C2 ¼ 0:0088 are constants, E is the emission (in
g/s), and a and v are the instantaneous acceleration and speed,
respectively. Formula (1) presents problems:

1. A dimensional analysis, as indicated in Table 1 where
L; T and M refer to the length, time and mass
magnitudes, reveals that C1 and C2 have dimensions.
Unfortunately, the authors do not indicate them and
consequently the formula cannot be used. This formula
is valid only for being applied to variables in given
dimensions, unless the constants are recalculated.

2. The formula ignores relevant variables that must include
the mass dimension. This is why the authors need to incor-
porate constants with dimensions.

3. Constants appearing in formulas should not be con-
fused with variables and if possible they should be
dimensionless.

Identification of the type of formulas which are valid and those
which are not and how to built valid formulas is the first step in
building models and deserves a careful discussion.
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Example 1.2 (Probability papers). Our second example refers to
the incorrect use of probability papers when they are used in
extreme value analysis or to identify domains of attraction. Though
it should be well known, some people seem to ignore that when
dealing with extremes there are two kinds of probability papers,
one for maxima (right tail) and another for minima (left tail). Using
the inadequate paper can lead to serious errors and consequences.
For example, when predicting minimum temperatures the use of
the Gumbel probability paper plot in the upper part of Fig. 1
reveals two important errors: (a) it is a maximal probability paper
when we have a problem of minima, and (b) the model is fitted to
all data, when only the left tail data should be used.

Contrary, the plot in the lower part is the adequate one because
it is a minimal (reverse) Gumbel probability paper. In addition, the
reverse Gumbel model has been fitted using the smallest 40 data
points, that is, fitting only the left tail of the data and not all the
range. All the above justifies the importance of clarifying the role of
probability papers and the differences when they are used (a) to
identify families of parametric distributions or (b) when they are
utilized for extreme value analysis.

Example 1.3 (Temperature example). Our third example illustrates
the use of an inadequate parametric family of distributions. Con-
sider a location with warm temperatures and suppose that the
0:98 percentile wants to be predicted. If we assume that tempera-
tures are log-normally distributed, then we can use this model for
the percentile prediction by taking a sample, calculating the
logarithms and estimating their normal mean l and standard

deviation r. Once we have these estimates, we can use the percen-
tile formula log x̂0:98 ¼ l̂þ 2:054r̂ and return to the original popu-
lation by using x0:98 ¼ expðlog x0:98Þ. The problem is that if a person
in the US uses Farenheit temperatures the result is different from
that obtained by another person, say in France, using Celsius tem-
peratures. For example, if we use the following sample in Farenheit
degrees f53:6;77:0;91:4;62:6;75:2;89:6;82:4;57:2;73:4;59:0g, we
get a percentile of 105 �F. However, using the same sample in �C,
that is, {12, 25, 33, 17, 24, 32, 28, 14, 23, 15}, we get a percentile
of 44.05 �C, which corresponds to 111.3 �F and not to the previous
temperature 105 �F. This illustrates the inconsistency of the log-
normal assumption in this particular case and the risk of predicting
erroneous return periods (leading to unsafe or overly costly engi-
neering designs). This occurs because the log-normal family of dis-
tributions is not stable with respect to changes in location. If we
assume that the temperatures in Farenheit degrees are log-normal,
we can obtain by a change of variable, the distribution (not a
log-normal) of temperatures in Celsius degrees and even extend
the log-normal to a more complicated one; however, it does not
seem recommendable using a different or a complicate family for
different units of measure if it is not strictly necessary. Thus, knowl-
edge of what families of parametric distributions can and cannot be
used in a given case has a high relevance in statistical modeling.

Example 1.4 (Wind example). This example illustrates the use of an
inadequate domain of attraction. Consider an engineering design
problem in which large winds play a decisive role. Then, it is extre-
mely important to identify the distribution of largest winds. To this
end, deciding among reverse Weibull, Gumbel and Frechet is crucial.
Thus, knowledge of the fact that finite or bounded variables cannot
have a maximal domain of attraction of Frechet type is relevant.
Selecting Frechet as the design distribution implies a very conserva-
tive position that can lead to unnecessary expenses. A more reason-
able and possibly still conservative assumption is the maximal
Gumbel domain of attraction (see [1] or [2]). Finally, choosing a
Weibull maximal domain of attraction could be the best decision,
but the corresponding parameters must be estimated with care.
Thus, a good knowledge of what families of extreme value distribu-
tions can be used in a given case and why is relevant.

Example 1.5 (Incompatible models). Assume that we want to
model the statistical behavior of a bivariate random variable
ðX;YÞ and we decide to assume that the two conditional families
fXjYðx j y; hxÞ and fYjXðy j x; hyÞ are normals and the variance of X j Y
is linear. In this case no bivariate distribution satisfies these condi-
tions, thus, we are in front of an impossible model.

This justifies a general discussion about what conditions can and
what cannot be imposed to have models compatible with the
assumptions.

The previous examples illustrate the need for using consistent
models. Consequently, when working with engineering stochastic
models, in order to avoid serious problems it is important to check
that they are probabilistically and dimensionally consistent. In this
paper we deal with this topic and consider all types of models includ-
ing univariate and multivariate. From the point of view of dimen-
sional analysis, the main problem with inconsistent models is that
if we use different data dimensions or different subsets of equations
in the model we obtain different results. Contrary, consistent models
always lead to the same results no matter what model formulas you
utilize or what variable units you use in the calculations.

1.1. Aims of the paper

In this paper we analyze and discuss some probability models
used to reproduce structural random variables from the point of
view of probability and dimensional consistency and physical
validity. The main aims of the paper are: (a) to provide examples

Table 1
Dimensional decomposition of the variables involved in Formula (1).

Magnitude C1 C2 E a v

L 0 �2 0 1 1
T �1 2 �1 �2 �1
M 1 1 1 0 0

0 2 4 6 8 10X

0.01
0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.9.

0.95

0.98

0.99

Pr
ob

ab
ili

ty

Maximal Gumbel Probability Paper

1.01
1.02
1.05
1.11
1.25
1.43
1.67
2.0
2.5
3.33
5.

10.

20.

50.

100.

R
et

ur
n 

Pe
rio

d

0 2 4 6 8 10
X

0.005

0.01

0.02

0.05

0.95
0.98

0.995

Pr
ob

ab
ili

ty

Minimal Gumbel Probability Paper

200.

100.

50.

20.

10.

5.
3.33
2.5
2.0
1.67
1.43
1.25
1.11
1.05
1.02
1.01

R
et

ur
n 

Pe
rio

d 

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9.

Fig. 1. Illustration of the Uppsala minimum temperatures data plotted on a
maximal (upper plot) and minimal (lower plot) Gumbel probability papers.
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