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a b s t r a c t

This paper develops a sparse grid stochastic collocation method for the reliability analysis of structures
with uncertain parameters and loads. The method consists of two standard techniques in uncertainty
quantification: the moment-based Gauss transformation and Smolyak-type sparse grid quadrature rule.
Unlike the first-order reliability method (FORM) or second-order reliability method (SORM), the devel-
oped method does not need the evaluation of the first- or second-order partial derivatives of the limit
state function considered and, moreover, does not suffer from the problem of multiple design points.
In addition, the developed method is suitable for all problems whose deterministic solutions can be found
and usually needs much fewer function evaluations than the Monte Carlo simulation method. Numerical
examples demonstrate that the developed method is exact enough for evaluating the mean values,
standard deviations, skewness and kurtosis of the limit state functions and small probabilities of failure
as low as 10�4. Even for probabilities of failure as low as 10�5, the quality of approximation obtained by
the method is also acceptable.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The fundamental problem in the structural reliability analysis is
to determine the probability of failure, i.e. the probability that the
total load effect (total demand), Q, will exceed in magnitude the
resistance (or capacity), R. In practical applications, the resistance
and the total load effect are usually implicit or nonlinear functions
of a set of random variables modeling external loads or structural
parameters, Y ¼ fYigN

i¼1, it is often impossible, therefore, to exactly
determine the cumulative distribution functions (CDFs) or proba-
bility density functions (PDFs) of R, Q, and the limit state function,
Z = R � Q. As a sequence, the exact determination of the probability
of failure corresponding to the limit state function is impossible.

Various approximate methods for the determination of the
probability of failure have been developed in the past several dec-
ades. Among them, the first-order reliability method (FORM) is the
most widely-used method which can provide sufficiently accurate
solution in the slightly nonlinear cases [1,2]. To improve the accu-
racy of FORM for the strongly nonlinear cases, the second-order
reliability method (SORM) has been developed [3–5]. However,
both FORM and SORM are nontrivial in the sense that they need
the determination of the first- and second-order partial derivatives

of the limit state function, Z(Y), with respect to the input random
variables, Y ¼ fYigN

i¼1. On the other hand, they may also encounter
the problem of multiple design points in practical applications [6].

An alternative numerical method for the determination of the
probability of failure is the Monte Carlo simulation method, which
generates ensembles of random realizations for the input random
variables and utilizes repetitive deterministic solvers for each
realization [2,7]. This method is suitable for all problems whose
deterministic solutions can be found, while it may need infeasible
computational effort to estimate the low probability of failure. To
save a part of the computational effort, the directional simulation
method [6], Latin Hypercube sampling method [2,8], quasi-Monte
Carlo method [9] and Markov chain Monte Carlo method [10] have
been developed. However, additional restrictions are imposed on
them and their application is limited.

In the last several years, the stochastic collocation method has
been developed for uncertainty quantification [11,12]. The stochas-
tic collocation method is based on two techniques in numerical
analysis: functional interpolation via Lagrange polynomials and
integration of functions via quadrature rules. In the structural reli-
ability analysis, the former can be used to construct a polynomial
approximation for the implicit or nonlinear limit state function,
Z(Y), and the latter can be used to obtain approximate estimates
of the first nth moments of Z(Y), such as the mean value lZ,
standard deviation rZ, skewness a3,Z, kurtosis a4,Z and so on. Based
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on the polynomial approximation or first nth moments, one can
approximately determine the probability of failure through using
the Monte Carlo simulation method or moment-based Gauss trans-
formation [13–15].

The core issue for the stochastic collocation method is the con-
struction of the set of interpolation points in the multidimensional
space of the input random variables. There exist two commonly-
used methods for the construction, i.e. the tensor product method
[12,16] and sparse grid method [17–19]. The sparse grid method
can generate much fewer interpolation points and, therefore, is a
more efficient tool to construct the set of interpolation points
[20]. Actually, the point estimate method [21] or decomposition
method [22] for the structural reliability analysis developed
recently can be regarded as a simplified version of the sparse grid
stochastic collocation method, as described in Appendix B.

The principle objective of the present study is to develop a
sparse grid stochastic collocation method for the structural reli-
ability analysis. The main idea of the method is to approximately
determine the probability of failure through using the first 4th
moments of the limit state function, which are computed by the
Smolyak-type quadrature formula. The use, computational accu-
racy and numerical efficiency of the developed method are demon-
strated by reliability analyses of a steel beam with an explicitly
nonlinear limit state function and a steel frame structure whose
limit state function is implicit and constructed by using the finite
element analysis.

2. Probability moments and failure probability

Without loss of generality, consider the following limit state
function for the structural reliability analysis

ZðYÞ ¼ RðYÞ � QðYÞ ð1Þ

in which the resistance, R(Y), and total load effect, Q(Y), are nonlin-
ear or implicit functions with respect to the input random variables,
Y ¼ fYigN

i¼1, modeling the external loads and structural parameters.
Mathematically, the probability of failure corresponding to the

limit state function is

Pf ¼ PðZ 6 0Þ ð2Þ

where P(�) denotes the probability of an event.
As already mentioned, it is often impossible to exactly deter-

mine the probability of failure since CDFs or PDFs of R, Q, and Z
are usually unknown. However, one can approximately estimate
the probability of failure from the first 4th moments of Z through
using moment-based Gauss transformations. The first 4th
moments of Z, i.e. the mean value lZ, standard deviation rZ, skew-
ness a3,Z and kurtosis a4,Z, are defined as

lZ ¼
Z

DY

ZðyÞfY ðyÞdy ð3Þ

r2
Z ¼

Z
DY

½ZðyÞ � lZ �
2fY ðyÞdy ð4Þ

a3;Z ¼
1
r3

Z

Z
DY

½ZðyÞ � lZ �
3fY ðyÞdy ð5Þ

a4;Z ¼
1
r4

Z

Z
DY

½ZðyÞ � lZ �
4fY ðyÞdy ð6Þ

in which DY is the domain of Y, Z(y) is the solution of Z(Y) obtained
from Eq. (1) by replacing Y by deterministic values y, and fY(y) is the
joint PDF of Y.

The probability of failure based on the first 4th moments can be
approximately obtained from

Pf ¼ U½Tð0Þ� ð7Þ

where U(�) denotes the CDF of a standard normal random variable,
and T(�) denotes a moment-based Gauss transformation, e.g. the
second order Hermite model as described in Appendix A.

From Eq. (7), one can obtain the generalized reliability index

b ¼ �Tð0Þ ð8Þ

It can be seen in Eqs. (3)–(6) that to find the first 4th moments of
the limit state function one only needs to compute the multivariate
integration

IðnÞ ¼
Z

DY

½ZðyÞ�nfY ðyÞdy; n ¼ 1;2;3;4 ð9Þ

In general, the multivariate integration must be computed by
numerical methods. Since the evaluation of Z(y) is often time-
consuming, it is necessary to reduce the number of function evalu-
ations of Z(y) to save the total computational effort.

3. Smolyak-type quadrature formula for multivariate numerical
integration

The input random variables, Y ¼ fYigN
i¼1, may be mutually

dependent in practical applications, while it is assumed here that
they are mutually independent. The assumption of independence
is not a loss of generality, since it is always possible to transform
the mutually dependent random variables to mutually indepen-
dent random variables [2,6,23]. Besides, the Rosenblatt transfor-
mation [6,23], Yi = Gi(Xi), is also employed so that the input
random variables, Y ¼ fYigN

i¼1, are expressed by a set of mutually
independent standard normal random variables, X ¼ fXigN

i¼1. Thus,
the multivariate integration, Eq. (9), can be rewritten as

IðnÞ ¼
Z þ1

�1
. . .

Z þ1

�1
fZ½G1ðx1Þ; . . . ;GNðxNÞ�gnuðx1Þ . . .uðxNÞdx1 . . . dxN

ð10Þ
where u(�) is the PDF of a standard normal random variable. The
joint PDF of X ¼ fXigN

i¼1 in Eq. (10) can be regarded as the weight
associated with the kernel {Z[G1(x1), . . ., GN(xN)]}n.

From the Smolyak algorithm [17], the sparse grid quadrature
formula for the numerical computation of the multivariate integra-
tion Eq. (9) can be derived as, see Appendix B

bIðnÞ ¼ X
i2Hðq;NÞ

ð�1ÞqþN�jij N � 1
qþ N � jij

� �

�
Xmi1

j1¼1

. . .
XmiN

jN¼1

fZ½G1ðxi1
j1
Þ; . . . ;GN xiN

jN

� �
�g

n
pi1

j1
. . . piN

jN

ð11Þ

where the abscissas and weights are xii
ji
¼

ffiffiffi
2
p

nii
ji

and pii
ji
¼ 1ffiffiffi

p
p fii

ji
,

ji ¼ 1; . . . ;mii , in which nii
ji

and fii
ji

are the abscissas and weights in

the Gauss–Hermite quadrature formula, the multi-index
i ¼ ði1; . . . ; iNÞ 2 NN

þ, the nonnegative integer q is the exactness level,
and the set H(q, N) is defined by

Hðq;NÞ ¼ fi 2 NN
þ; i � 1 : qþ 1 �

XN

n¼1

in � qþ Ng ð12Þ

in which 1 = (1, . . ., 1).
The choice of q and the definition of mi depends on the nonlin-

earity of the limit state function considered and are discussed in
Appendix B.

4. Errors in the method

Since the developed reliability method consists of the moment-
based Gauss transformation and Smolyak-type sparse grid
quadrature rule, the overall error of the method can be roughly
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