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a r t i c l e i n f o 

Article history: 

Received 20 December 2013 

Received in revised form 8 April 2014 

Accepted 8 April 2014 

Keywords: 

classification 

cross-validation 

binomial 

permutation test 

a b s t r a c t 

Multivariate classification is used in neuroimaging studies to infer brain activation or in medical applications 

to infer diagnosis. Their results are often assessed through either a binomial or a permutation test. Here, 

we simulated classification results of generated random data to assess the influence of the cross-validation 

scheme on the significance of results. Distributions built from classification of random data with cross- 

validation did not follow the binomial distribution. The binomial test is therefore not adapted. On the 

contrary, the permutation test was unaffected by the cross-validation scheme. The influence of the cross- 

validation was further illustrated on real-data from a brain–computer interface experiment in patients with 

disorders of consciousness and from an fMRI study on patients with Parkinson disease. Three out of 16 

patients with disorders of consciousness had significant accuracy on binomial testing, but only one showed 

significant accuracy using permutation testing. In the fMRI experiment, the mental imagery of gait could 

discriminate significantly between idiopathic Parkinson’s disease patients and healthy subjects according to 

the permutation test but not according to the binomial test. Hence, binomial testing could lead to biased 

estimation of significance and false positive or negative results. In our view, permutation testing is thus 

recommended for clinical application of classification with cross-validation. 
c © 2014 Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ). 

1. Introduction 

In the last few years, there has been a growing interest in the 

statistical assessment of classification results in biomedical appli- 

cations. Machine learning approaches are now increasingly used to 

study brain function ( Etzel et al., 2009 ; Pereira et al., 2009 ; Lemm et 

al., 2011 ) and have been proposed as a diagnostic and prognostic tool 

for patients (e.g., in the field of severe brain injury see ( Phillips et al., 

2011 ; Galanaud et al., 2012 ; Luyt et al., 2012 ; Lule et al., 2013 ) or 

Parkinson disease ( Focke et al., 2011 ; Orru et al., 2012 ; Schrouff et al., 

2012 ; Garraux et al., 2013 ; Schrouff et al., 2013 )). Such classification 

machines have also been designed for many other applications such 

as analyzing DNA microarray and predicting tumor subtype and clin- 

ical outcome ( Golub et al., 1999 ; Simon et al., 2003 ). Limitations and 

controversies of these approaches have been recently highlighted in a 
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study using brain–computer interfaces (BCIs) to unravel signs of con- 

sciousness in patients with disorders of consciousness ( Cruse et al., 

2011 ; Goldfine et al., 2013 ). A statistically significant classification ac- 

curacy is one where we can reject the null hypothesis that there is no 

information about task, patient diagnosis or outcome in the data from 

which it is being predicted. In a two-class problem with an equivalent 

number of elements in each class, e.g., disease vs. no-disease, the the- 

oretical chance level, which is valid in the case of an infinite number 

of trials, is 50%. In practice, we only have a limited number of trials, 

which can be in the order of 10, due to patient fatigue. If a specific set 

of features can classify the data with for example 58% accuracy, the 

question is whether this accuracy is trustworthy. To tackle this issue, 

several approaches have been proposed in the literature. 

A frequently used method is based on the binomial distribution 

( M ̈uller-Putz et al., 2008 ; Pereira et al., 2009 ; Billinger et al., 2013 ). 

With a limited number of trials, the results of a classifier are seen as 

the results of tossing a coin, an unfair coin, which can be modeled as 

a Bernoulli trial with probability p = 50% of success. The probability 

of achieving k successes out of N independent trials is given by the 
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binomial distribution. Knowing the distribution and a given p -value, 

we can compute a lower bound for any classification accuracy. If 

the lower bound is higher than the chance level, we can reject the 

hypothesis that the accuracy was obtained by chance. Here, we are 

only interested on the accuracies higher than the chance level. We 

are not interested in the chance of coincidental deviations below the 

expected 0.50 because we would not pretend our features contain 

information in that case. Another approach is based on the Pearson 

chi-square coefficient ( Kubler and Birbaumer, 2008 ). However, for 

small number of trials, as it is often the case in the neuroimaging and 

electrophysiology literature, this approach is not reliable ( Pereira et 

al., 2009 ) and matches the binomial test for higher number of trials 

( Howell, 2012 ). 

Alternatively, permutation test based methods ( Good, 2005 ) have 

been employed ( Mukherjee et al., 2003 ; Etzel et al., 2009 ; Pereira et al., 

2009 ; Schrouff et al., 2013b ). A permutation test is a non-parametric 

test that has also been proposed as a substitute to the Student t -test 

in functional neuroimaging ( Nichols and Holmes, 2002 ) and electro- 

physiology ( Maris and Oostenveld, 2007 ) experiments. A permutation 

test estimates the distribution of the null hypothesis from the data. 

Assuming that there is no class information in the data, the labels are 

randomly permuted and the accuracy computed with the new labels. 

As the new labels are random, the new accuracy estimate is expected 

to reflect the chance distribution. The permutation is repeated hun- 

dreds to thousands of times. Then, the p -value is given by the fraction 

of the sample that is larger than or equal to the accuracy actually 

observed when using the correct labels. 

To estimate classification accuracy, ideally, the original data are 

split into two independent, complementary subsets: a training set 

(which is used to train the classifier and to define all parameters) 

and a testing set (which is used to validate the results). In practice, 

with small datasets, a cross-validation (CV) scheme is often used. The 

process of splitting the data into two is repeated several times using 

different partitions. The results obtained from all partitions are then 

averaged ( Lemm et al., 2011 ). The classification accuracy can then be 

tested. Following common practice ( Pereira et al., 2009 ; Pereira et al., 

2011 ), the accuracy estimate obtained through a CV could be treated 

as if it came from a single classifier. In that case, the binomial test sees 

all accuracies as independent. 

In the following, we will show on simulated and real data that the 

CV scheme has an effect on the calculation of the chance level and that 

this influence is accounted for by the permutation test but not by the 

binomial test. We will first present results from simulated data illus- 

trating the influence of the CV scheme. Next, we will exemplify how 

this may influence the “diagnosis” of patients with disorders of con- 

sciousness on real data from a previous EEG-based brain–computer 

interface (BCI) study ( Lule et al., 2013 ). We will then further illustrate 

the influence with an fMRI study on activation patterns in Parkinson’s 

disease ( Cremers et al., 2012 ; Schrouff et al. , 2012 , 2013a ). Finally, we 

will discuss some hypotheses underlying the observed differences be- 

tween classification testing methods. Our simulations make a simpli- 

fying assumption, e.g. type of features, and our example from real data 

does not cover all possible data source and classification approaches, 

but the issues presented here are quite general and apply to studies 

employing a cross-validation scheme to estimate the accuracy of the 

data. 

2. Material and methods 

2.1. Simulated data 

To test the validity of the binomial and permutation tests to assess 

classification accuracy, we generated random datasets for a two-class 

problem. We simulated three cases. First, we tested several scenar- 

ios with low number of features and trials. Second, we tested the 

influence of the number of repetitions of the CV scheme. Third, we 

tested scenarios with high number of features and low number of 

trials as often the case in the neuroimaging literature. The genera- 

tion of the random data and the classifiers used built-in MATLAB (The 

MathWorks, Natick, MA, USA) functions ( rand, randperm, classify ) 1 

and libsvm functions ( Chang and Lin, 2011 ). Datasets were generated 

with 10,000 simulations. Each simulation included two sets with an 

equal number of trials. Trial number was 100, 50 or 30. Trials of the 

100 trial set (respectively 50 and 30 trial sets) had 40 features (re- 

spectively 20 and 10). Features and labels were randomly assigned 0 

and 1 ( rand function thresholded at .5). We tested four CV schemes. 

In an ideal CV scheme, all possible partitions of the data should be 

tested. This is the case for the leave-one-out (LOO) CV but in prac- 

tice for classical N-fold CV schemes it is computationally intractable. 

Nevertheless, repeating the N-fold CV several times with different 

partitions is recommended and can reduce the variance of the es- 

timator ( Efron and Tibshirani, 1997 ; Etzel et al., 2009 ; Lemm et al., 

2011 ). The CV schemes were LOO, 10-fold, 5-fold and 2-fold CVs. The 

first three are the most used and recommended in the literature (e.g., 

Lemm et al., 2011 ). The 2-fold CV is an extreme case at the opposite 

of the LOO CV. A linear discriminant analysis and a support vector 

machine ( Burges, 1998 ) with linear kernel classified the data. 
To compute the binomial lower bound, the binomial distribution is 

often approximated by a normal distribution; for example to compute 

the Wald interval or adjusted Wald interval ( Kohavi, 1995 ; Martin and 

Hirschberg, 1996 ; Berrar et al., 2006 ; Billinger et al., 2013 ). However, 
the approximation of the binomial distribution by the normal distri- 

bution is only valid whenever the number of trials N and the accuracy 
p satisfy the following equation: N × p × (1 − p ) > 5 ( Berrar et al., 
2006 ). In the absence of problem specific knowledge, the best choice 

for estimation of the bound is derived from Jeffreys’ Beta distribution 

( Martin and Hirschberg, 1996 ; Berrar et al., 2006 ). This approxima- 

tion is adequate for 10 ≤ N ( Martin and Hirschberg, 1996 ). The bino- 
mial lower bound ( λ) was computed using Jeffreys’ Beta distribution 

( Berrar et al., 2006 ) as follows: 

λ ≈
{ 

a + 

2 ( N − 2 m ) z 
√ 

0 . 5 

2 N ( N + 3 ) 

} 

− z 

√ 

a ( 1 − a ) 

N + 2 . 5 

where N is the number of trials, m is the number of successful 

trials, a is the estimated accuracy and z is the z -score (1.65 for one 

sided test with p < .05 (resp. 2.33 for p < .01)). 

The permutation test ( Good, 2005 ) was based on 999 permutations 

plus the original accuracy ( Ojala and Garriga, 2010 ). Only accuracies 

higher than 0.5 were assessed using permutation testing. We did not 

compute permutation test for accuracies smaller or equal than 0.50 

because we would not pretend that our classifications contain in- 

formation in that case. The permutation test consisted of randomly 

exchanging the label and classifying the data with the CV scheme. 

The p -value was calculated as the sum of all values of the permuta- 

tion distribution equal or higher than the results of the original data 

divided by the number of permutations. 

In a first experiment, 12 datasets were built, three for each of the 

four CV schemes with 100, 50 or 30 trials, and with 10,000 simu- 

lations each. Every simulation involved two subsets with an equal 

number of trials and features. First, the classification accuracy of the 

trials from the first subset obtained with linear discriminant analysis 

was assessed with a chosen CV scheme ( Fig. 1 A). The distribution of 

accuracies obtained from all simulations was called: CV distribution. 

Second, to build an empirical binomial distribution, all trials from the 

first subset were used to train a classification algorithm which was 

applied to the second, independent, subset ( Fig. 1B ). A third distribu- 

tion, the CV-independent distribution, was built by applying a mixed 

CV scheme where the N-1 training folds came from the first subset 

1 The MATLAB code can be found at https: // github.com / CyclotronResearchCentre / 

BinomPermTest . 

https://github.com/cyclotronresearchcentre/binompermtest


Download English Version:

https://daneshyari.com/en/article/3075352

Download Persian Version:

https://daneshyari.com/article/3075352

Daneshyari.com

https://daneshyari.com/en/article/3075352
https://daneshyari.com/article/3075352
https://daneshyari.com

