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In the context of Alzheimer's disease, two challenging issues are (1) the characterization of local hippocampal
shape changes specific to disease progression and (2) the identification of mild-cognitive impairment patients
likely to convert. In the literature, (1) is usually solved first to detect areas potentially related to the disease.
These areas are then considered as an input to solve (2). As an alternative to this sequential strategy, we inves-
tigate the use of a classificationmodel using logistic regression to address both issues (1) and (2) simultaneously.
The classification of the patients therefore does not require any a priori definition of themost representative hip-
pocampal areas potentially related to the disease, as they are automatically detected. We first quantify deforma-
tions of patients' hippocampi between two time points using the large deformations by diffeomorphisms
framework and transport these deformations to a common template. Since the deformations are expected to
be spatially structured, we perform classification combining logistic loss and spatial regularization techniques,
which have not been explored so far in this context, as far as we know. The main contribution of this paper is
the comparison of regularization techniques enforcing the coefficient maps to be spatially smooth (Sobolev),
piecewise constant (total variation) or sparse (fused LASSO) with standard regularization techniques which do
not take into account the spatial structure (LASSO, ridge and ElasticNet). On a dataset of 103 patients out of
ADNI, the techniques using spatial regularizations lead to the best classification rates. They also find coherent
areas related to the disease progression.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Large scale population studies aim to improve the understanding of
the causes of diseases, define biomarkers for early diagnosis, and devel-
op preventive treatments. An important challenge for medical imaging
is to analyze the variability in MRI acquisitions of normal control (NC),
mild cognitive impairment (MCI), and Alzheimer's disease (AD) pa-
tients. For Alzheimer's disease, several classification strategies have

been proposed to separate patients according to their diagnosis. These
methods can be split into three categories: voxel-based (Fan et al.,
2007, 2008a,b; Klöppel et al., 2008; Lao et al., 2004; Magnin et al.,
2009; Vemuri et al., 2008), cortical-thickness-based (Desikan et al.,
2009; Klöppel et al., 2008; Querbes et al., 2009) and hippocampus-
based (Chupin et al., 2007, 2009; Gerardin et al., 2009) methods.
While decent classification rates can be achieved to separate AD from
NC or NC from p-MCI (progressive MCI patients, i.e. converting to AD),
all methods perform poorly at separating s-MCI (stable MCI patients,
i.e. non-converting to AD) and p-MCI. A recent review comparing
these methods can be found in Cuingnet et al. (2011).

In the case of longitudinal analysis, it is not anymore the shapes that
are compared but their evolutions in time. To extract information be-
tween two successive time-points, we use a one-to-one deformation
which maps the first image onto the second one. Different registration
algorithms are available to compute plausible deformations in this con-
text. However, only one, the large deformations via diffeomorphisms
(LDDMM) (Beg et al., 2005), provides a Riemannian setting that enables
to represent the deformations using tangent vectors: initial velocity
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fields or equivalently initial momenta. This can be used in practice to re-
trieve local information and to perform statistics on it as presented in
Vaillant et al. (2004) and Wang et al. (2007). In this direction, it is
worthmentioning the study of Singh et al. (2010)which shows the cor-
relation between principal modes of deformation and diagnosis. In Qiu
et al. (2008) the authors estimate the typical deformation of several
clinical groups from the deformations between baseline and follow-up
hippocampus surfaces. In order to compare this information across the
population, we need to define a common coordinate system. This im-
plies (1) the definition of a template and (2) a methodology for the
transport of the tangent vector information. Note finally that, as far as
the authors know, no paper explores binary classification using logistic
regression in this context.

Quality of shape descriptors with regard to the disease is often eval-
uated through statistical significance tests or classification performance.
In this paper, we evaluate descriptors on a binary classification task
using logistic regression.

In addition to its simplicity, it has the advantage of providing a map
of coefficients weighting the relevance of each voxel. Such map can be
used to localize the hippocampus deformations that are related to AD.
However, the dimensionality of the problem (i.e. number of voxels p)
beingmuch higher than the number of observations (i.e. number of pa-
tients n, p ~ 106≫ n ~ 102), the problem requires proper regularization.

Now standard regularization methods such as ridge (Hoerl and
Kennard, 1970), LASSO (Tibshirani, 1994) and Elastic Net (Zou and
Hastie, 2005) do not take into account any spatial structure of the
coefficients.

In contrast, spatial models for regularizing supervised learning
methods have been proposed in the literature (Grosenick et al., 2013;
Jenatton et al., 2012; Ng and Abugharbieh, 2011). Total variation was
used to regularize a logistic regression on functional MRI (fMRI) data
(Michel et al., 2011). This method promotes coefficient maps with spa-
tially homogeneous clusters. Fused LASSO was also used on fMRI data
(Baldassarre et al., 2012; Gramfort et al., 2013). Similar ideas can be
found in Cuingnet et al. (2012) where the authors defined the notion
of spatial proximity to regularize a linear SVM classifier.

In Durrleman et al. (2013), the authors introduce sparse parametri-
zation of the diffeomorphisms in the LDDMM framework. Our goal is
different: we want spatial properties (smoothness, sparsity, etc.) to be
found across the population (i.e. on the common template) and we
want this coherence to be driven by the disease progression.

In this paper, we investigate the use of total variation, Sobolev and
fused LASSO regularizations in 3D volumes. Compared to total variation,
Sobolev enforces smoothness of the coefficient map, whereas fused
LASSO adds a sparsity constraint.

The deformationmodel used to assess longitudinal evolutions in the
population is presented in Section 2. Machine learning strategies are
discussed and the model of classification with logistic loss and spatial
regularization is described in Section 3. The dataset used and numerical
results are presented in Section 4. We illustrate that initial momenta
capture information related to AD progression, and that spatial
regularizations significantly increase classification performance.
Section 5 concludes the paper.

2. Longitudinal deformation model for population analysis

2.1. Global pipeline

Let us assume that we have a population of patients and the binary
segmentation of their hippocampus at two different time points, called
screening and follow-up. Let us also assume that all patients have the
same diagnosis at the screening time point, and only a part of them
have converted to another diagnosis at the follow-up time point. Our
goal is to compare patient evolutions, and classify them with regard to
disease progression, i.e. stable diagnosis versus progressive diagnosis.
From a machine learning point of view, we need to build features
encoding the evolutions of the patients.

We use the pipeline summarized in Fig. 1. First, the evolution de-
scriptors are computed locally for each patient (independently). To be
able to compare these descriptors, one needs to transport them into a
common space. To do so, a population template is computed, towards
which all the local descriptors are transported. Finally, classification is
performed to separate progressive from stable patients.

2.2. Diffeomorphic registration via geodesic shooting

As mentioned in Sections 1 and 2.1, local deformation descriptors
are computed to model the evolutions of the patients. In this section,
we describe how we use diffeomorphic registration via geodesic shoot-
ing Vialard et al. (2012a) to compute these local deformation
descriptors.

2.2.1. Definitions
To register a source image I : Ω⊂ ℝ3 →ℝ towards a target image J :

Ω ⊂ ℝ3 → ℝ, the LDDMM framework (Beg et al., 2005) introduces the
following minimization problem

argmin
υ∈L2 ½0;1�;HKð Þ

1
2
∥I∘ϕ−1

0;1− J∥2L2 þ λ
Z 1

0
∥υt∥

2
Kdt; ð1Þ

where υ : (t,ω)∈ [0,1] ×Ω⊂ℝ3→Ω is a time dependent velocity field
that belongs to a reproducing kernel Hilbert spaceHK of smooth enough
vector fields defined on Ω, and of associated kernel K and norm ∥ ∥K,
and λ ≥ 0 is a regularization coefficient. For (t,ω) ∈ [0,1] × Ω, we note
υt(ω) = υ(t, ω). The deformation ϕ : [0,1]2 × Ω ⊂ ℝ3 → Ω is given by
the flow of υt

∀ t;ωð Þ ∈ 0;1½ � �Ω;
∂ϕ0;t

∂t ωð Þ ¼ υt∘ϕ0;t ωð Þ
ϕt;t ωð Þ ¼ ω ;

8<
: ð2Þ

where ϕt1, t2 is the deformation from t= t1 to t= t2. Such approach in-
duces a Riemannian metric on the orbit of I, i.e. the set of all deformed
images by the registration algorithm (Miller et al., 2006). The first
term in formula (1) is a similarity term controlling the matching
quality whereas the second one is a smoothing term controlling
the deformation regularity. Now noting It ¼def : I∘ϕ−1

0;t and Jt ¼def : J∘ϕt;1 ,

Fig. 1. Four steps are needed to classify patient evolutions using local descriptors of shape deformations: (1) the local descriptors are computed for each patient independently, (2) a pop-
ulation template is computed, (3) all local shape deformation descriptors are transported towards this template, and (4) classification is performed.
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