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a b s t r a c t

Engineering systems typically deteriorate due to regular use and exposure to harsh environment. Under
such circumstances the owner of a system must take important decisions such as whether to repair,
replace or abandon the system. Such decisions can affect the safety of, and the benefits to the users
and the owner. Life-cycle analysis (LCA) provides a rational basis for such decision making process. In
particular, LCA can provide helpful information on the performance of a system over its entire life-cycle,
like its time-dependent reliability, the costs associated with its operation, and other quantities related to
the service life of the system.

This paper proposes a novel probabilistic formulation for LCA of deteriorating systems named Renewal
Theory-based Life-cycle Analysis (RTLCA). The formulation includes equations to obtain important
life-cycle variables such as the expected time lost in repairs, the reliability of the system and the cost
of operation and failure. The proposed RTLCA formulation is based on renewal theory and proposes
analytical solutions for the desired LCA variables using numerically solvable integral equations. As an
illustration, the proposed RTLCA formulation is implemented to analyze the life-cycle of an example
reinforced concrete (RC) bridge located in a seismic region. This analysis accounts for the accumulated
seismic damage in the bridge columns caused by the earthquakes occurring during bridge’s life-cycle.
The analysis results provide valuable insight into the importance of seismic damage in a bridge’s
life-cycle performance and the strategies to operate a system in an optimal manner.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering systems have to be operated in a strategic manner
in order to maximize the safety of, and the benefits to the users and
owners. Such operation strategies can be effectively devised only
by conducting a life-cycle analysis (LCA) of the system. In LCA,
the performance of a system, over its entire life-cycle, is studied
in terms of a variety of performance measures such as reliability
and its dependence on age of the system, the costs and benefits
of operation a system taking into account the influence of repairs
and maintenances. LCA must factor in the uncertainties in the
operating conditions (e.g., environmental conditions, intensity
and time of occurrence of loads) and, for deteriorating systems, it
is extremely critical to model the process of deterioration and its
effect on life-cycle performance of the system.

In the past, several researchers have developed models for LCA
using the well known renewal theory. Renewal theory based mod-
els attract attention because they minimize the need for computa-
tionally expensive simulations and offer analytical equations to
estimate the life-cycle performance measures for a system.
However, renewal theory models are built on a well known
assumption i.e., when a system is repaired its original properties
are restored. Any form of repair is considered to be a complete
renewal of the system and therefore partial repairs cannot be han-
dled in renewal theory. Furthermore, all renewal cycles are (i.e.
time period between two renewals) are assumed to be indepen-
dent of each other. With these assumptions, researchers have time
to time proposed various LCA models. Rackwitz [1] proposes equa-
tions to compute the expected values of benefit derived from oper-
ating a system, the cost of failures, the availability of the system
and to optimize the design of system based on minimum failure
rates. The work develops all the equations for infinite time horizon
and for only one type of failure of the system (i.e. either service
ability or ultimate failure). Streicher and Rackwitz [2], and Joanni
and Rackwitz [3] compute the expected values of failure cost and
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benefits of a deteriorating system that is being inspected at regular
time intervals followed by repairs. The probability of repair or no
repair after inspection is computed based on either age or condi-
tion of the system. Similarly, Noortwijk [4], Noortwijk and Weidi
[5] and Weidi et al. [6] proposed equations for expectation and var-
iance of life-cycle costs for infinite time horizon. Noortwijk and
Frangopol [7] compare the results from a renewal model and sim-
ulation based model. Several researchers have also developed
methods that are not based on renewal theory. Typically, such
methods are either purely based on monte-carlo simulation [8–
16] or are analytical methods based on some simplifying assump-
tions. Simulations based methods are widely applicable but can be
computationally expensive. Analytical methods not based on
renewal theory [17–24] are typically unable to model deterioration
as a stochastic process and mostly a deterministic function of time
is used to represent deterioration. Furthermore, it is difficult to
consider both service ability and ultimate types of failures using
such methods.

This paper proposes a novel renewal theory based LCA model
(RTLCA) for deteriorating systems. The proposed model provides
equations to compute the instantaneous probability of being in
service, the expected values and variances of availability, age, ben-
efit, and costs of operation and failures of the system for a finite
time horizon. The model accounts for both serviceability and ulti-
mate failures. Although many of the mentioned concepts exist in
the available renewal models, in the past they have been discussed
primarily in the context of infinite time horizon which is not rep-
resentative of an engineering system’s life-span. In this paper, we
derive all the equations for finite time horizon. In our knowledge,
the proposed concepts and treatment of instantaneous probability
of being in service and age is novel in LCA. The repair durations are
considered dependent on the level of damage and are not consid-
ered negligible as has often been found in existing models. The pre-
sented formulation is made general so that equations are not
dependent on any specific method to model deterioration as long
as certain renewal probabilities and density functions can be com-
puted. An example is presented to illustrate the proposed RTLCA
formulation where the life-cycle of a reinforced concrete (RC)
bridge is analyzed accounting for the deterioration caused by
earthquakes and corrosion. The occurrence of earthquakes is mod-
eled using a time-dependent stochastic process accounting for
both main shocks and aftershocks. The example considers delays
in repair after earthquakes and the damage accumulated during
this delay due to aftershocks. Corrosion is modeled as a function
of time with a random initiation time.

This paper is organized into six sections including this introduc-
tion. The second section describes the events typically observed in
the life-cycle of an engineering system and introduces a few defi-
nitions used in the paper. The third section develops the equations
for computing various LCA variables based on renewal theory. The
fourth section briefly describes an existing stochastic deterioration
model that can be used for RTLCA. The fifth section uses the sto-
chastic deterioration model and the proposed RTLCA formulation
to analyze the life-cycle of an example RC bridge. The sixth section
presents the conclusions derived from this work.

2. Life-cycle of an engineering system

Fig. 1 shows the various events in the life-cycle of an engineer-
ing system that is experiencing deterioration. The state of the sys-
tem at a given time t is described in terms of the probability of
ultimate failure Pf(t) of the system given that a load acts on the sys-
tem at time t. Changes in Pf(t) occur in the form of discrete or con-
tinuous increments. Discrete increments are due to shocks that
cause sudden changes in the system properties. Continuous incre-
ments in Pf(t) are due to a gradual deterioration of the system

properties due to phenomena like corrosion of steel, alkali-silica
reactions, delayed-ettringite formation, creep, etc.

Fig. 1 shows that an engineering system experiences alternating
phases of being in use and in down-time. A system is said to be in
use at time t if the system is functioning at that time. On the other
hand, a system is said to be down or experiencing down-time if the
system is either abandoned or removed from the service for repairs
or replacement. In this paper, we call the start of a down-time as an
intervention (I). The down-time of a system ends when the repair or
replacement is complete and the system starts functioning again.
In this paper, we call this event renewal (L). As mentioned earlier,
interventions can be preventive or essential. Preventive interven-
tions are typically made when a pre-determined safety related
intervention criterion is met. Some examples of intervention crite-
ria are: the exceedance of a threshold intensity of the applied load,
a serviceability type failure such as exceedance of a threshold level
for damage or Pf(t), and reaching a pre-determined time elapsed
since previous renewal (like in the case of a scheduled mainte-
nance). Fig. 1 shows that the ith intervention Ii that occurs at time
tIi

is preventive and is conducted because Pf(t) P pa. The figure also
shows that Iiþ1 is an essential intervention and occurs because the
system experiences an ultimate failure at time tIiþ1 because of
which Pf(t) jumps to 1.0. The corresponding renewal events Li

and Li+1 occur at time tLi
and tLiþ1 , respectively. In the figure, TIi

is
the time interval between Li�1 and Ii and TDi

is the down-time fol-
lowing Ii.

For some systems, deterioration does not progress during the
down-time because the system is removed from service and it is
immediately repaired. However, in some cases (as shown in the
figure) the actual repair work may not begin immediately at tIi

and a lag period (Tli following Ii and Tliþ1
following Ii+1) may exist

during which the deterioration process may continue. Generally,
this is the time required for the mobilization of the required
resources. For example, an infrastructure that has been closed
due to damage from an earthquake is still exposed to aftershocks
before the repairs or replacement might take place. In such cases,
the lag period may significantly affect the LCA and hence must
be considered.

3. Economic feasibility considerations for a system

The costs incurred in the life-cycle of the system after its initial
construction can be grouped into either cost of operation COp(t) or
failure losses CL(t). The cost COp(t) is the total cost of repairs and
replacement of the system following the serviceability and
ultimate failures in order to operate the system up to time t. The
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Fig. 1. Life-cycle of an engineering system.
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