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a b s t r a c t

The computation of the failure probability of geotechnical structures considering the soil spatial variabil-
ity is generally performed using Monte Carlo Simulation (MCS) methodology. This method is very time-
consuming especially when computing a small failure probability. As an alternative, Subset Simulation
(SS) approach was proposed by Au and Beck [3] to efficiently calculate the small failure probability. In
the present paper, a more efficient approach called ‘‘improved Subset Simulation (iSS)’’ approach is
employed. In this method, the first step of the SS approach is replaced by a conditional simulation in
which the samples are generated outside a hypersphere of a given radius. The efficiency of the iSS
approach is illustrated here through the probabilistic analysis at the serviceability limit state (SLS) of
two neighboring strip footings resting on a soil with 2D spatially varying Young’s modulus. The system
response is the differential settlement between the two footings. The probabilistic results have shown
that the probability Pe of exceeding a tolerable differential settlement computed by the iSS approach is
very close to that calculated by the MCS methodology applied on the original deterministic model. The
results have also shown that the use of the iSS approach has reduced the number of calls of the determin-
istic model by about 50% with respect to the SS approach.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The classical Monte Carlo Simulation (MCS) methodology is
generally used to calculate the failure probability of geotechnical
problems involving random fields (e.g. [8,14,5] at ULS and [7,9]
at SLS analysis). In these studies, only the mean value and the stan-
dard deviation of the system response were extensively investi-
gated. This is because MCS requires a large number of calls of the
deterministic model for the computation of the small failure prob-
abilities. As alternative to MCS methodology, the Subset Simulation
(SS) approach was proposed by Au and Beck [3] to calculate the
small failure probability. The first step of the SS method is to gen-
erate a given number of realizations of the uncertain parameters
using the classical MCS technique. The second step is to use the
Metropolis–Hastings (M–H) algorithm to generate realizations in
the direction of the limit state surface. This step is repeated until
reaching the limit state surface. It should be emphasized here that
in case of a small failure probability, SS requires the repetition of
the second step several times to reach the limit state surface. This
leads to a high number of calls of the deterministic model and con-
sequently a high computational time. To reduce the computation
time of the SS approach, Defaux et al. [6] proposed a more efficient

approach called ‘‘improved Subset Simulation (iSS)’’. In this meth-
od, the first step of the SS approach was replaced by a conditional
simulation. In other words, instead of generating realizations di-
rectly around the origin by the classical MCS, the realizations are
generated outside a hypersphere of a given radius Rh. This reduces
the number of realizations which are not located in the failure
zone. Consequently, the number of realizations required to reach
the limit state surface is significantly reduced. Notice that Defaux
et al. [6] have employed the iSS to calculate the failure probability
in the case where the uncertain parameters are modeled by ran-
dom variables. In the present paper, the iSS is employed in the case
where the uncertain parameters are modeled by random fields.
This method is illustrated herein through the computation of the
probability (Pe) of exceeding a tolerable differential settlement be-
tween two neighboring strip footings resting on a soil with a 2D
spatially varying Young’s modulus. The Young’s modulus is mod-
eled by a random field. The footings are subjected to central verti-
cal loads with equal magnitude. The random field is discretized
into a finite number of random variables using the Karhunen–
Loeve (K–L) expansion. The differential settlement between the
two footings was used to represent the system response. The
deterministic model used to compute the system response is based
on numerical simulations using the commercial software FLAC.

This paper is organized as follows: a brief review of the SS
approach and the Karhunen–Loeve expansion method is first
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presented. Then, the iSS approach and its implementation in the
case of random field problems are presented. This is followed by
the illustration of the efficiency of the iSS approach through the
probabilistic analysis of two neighboring strip footings resting on
a spatially varying soil. The paper ends with a conclusion of the
main findings.

2. Review of subset simulation approach

Subset simulation was proposed by Au and Beck [3] to compute
the small failure probabilities. The basic idea of the subset simula-
tion approach is that the small failure probability can be expressed
as a product of larger conditional failure probabilities. Consider a
failure region F defined by the condition G < 0 where G is the perfor-
mance function and let (s1, . . ., sk, ..., sNt) be a sample of Nt realizations
of a vector ‘s’ composed of M random variables. It is possible to define
a sequence of nested failure regions F1, . . ., Fj, ..., Fm of decreasing size
where F1 � ::: � Fj � ::: � Fm ¼ F (Fig. 1). An intermediate failure re-
gion Fj can be defined by G < Cj where Cj is an intermediate failure
threshold whose value is larger than zero. Thus, there is a decreasing
sequence of positive failure thresholds C1, . . ., Cj, ..., Cm corresponding
respectively to F1, . . ., Fj,. . ., Fm where C1>. . .>Cj>...>Cm = 0. In the SS
approach, the space of uncertain parameters is divided into a num-
ber m of levels with equal number Ns of realizations (s1, . . ., sk, ..., sNs)
where Nt = Ns �m. An intermediate level j contains a safe region and
a failure region defined with respect to a given failure threshold Cj.
The conditional failure probability corresponding to this intermedi-
ate level j is calculated as follows:

PðFj Fj�1

�� Þ ¼ 1
Ns

XNs

k¼1

IFj
ðskÞ ð1Þ

where IFj
ðskÞ ¼ 1 if sk 2 Fj and IFj

ðskÞ ¼ 0 otherwise. Notice that in
the SS approach, the first Ns realizations are generated using MCS
methodology according to a target PDF Pt. The next Ns realizations
of each subsequent level are obtained using Markov chain method
based on Metropolis–Hastings (M–H) algorithm according to a pro-
posal PDF Pp. Notice that a modified M–H algorithm was proposed
by [15]. This modified algorithm was used in this paper to generate
the realizations of level j (j = 1, 2, . . ., m).

The failure probability P(F) = P(Fm) of the failure region F can be
calculated from the sequence of conditional failure probabilities as
follows:

PðFÞ ¼ PðF1Þ
Ym
j¼2

PðFj Fj�1

�� Þ ð2Þ

where P(F1) is the failure probability corresponding to the first level
of the SS approach, m is the number of levels required to reach the
limit state surface and PðFj Fj�1

�� Þ is an intermediate conditional fail-
ure probability. This equation can be regarded as a system consist-
ing of m components (related to the m failure regions F1, . . ., Fj,. . .,
Fm) connected in parallel. Consequently, the failure probability of
the failure region F is the intersection of all conditional failure prob-
abilities of the failure regions F1, . . ., Fj, . . ., Fm. Thus, the failure prob-
ability P(F) is:

PðFÞ ¼ Pð\m
j¼1FjÞ ð3Þ

where

Pð\m
j¼1FjÞ ¼ PðFm \m�1

j¼1 Fj

��� ÞxPð\m�1
j¼1 FjÞ ¼ PðFm Fm�1j ÞxPð\m�1

j¼1 FjÞ

¼ ::: ¼ PðF1Þ
Ym
j¼2

PðFj Fj�1

�� Þ ð4Þ

It should be noticed here that the computation of the failure
probability P(F) may be determined using alternatively one of the
two following procedures. The first procedure consists in prescrib-
ing a sequence of C1, . . ., Cj,. . ., Cm so that C1>. . .>Cj>...>Cm = 0 and
then, calculating the different values of P(Fj/Fj�1) at the different
levels using Eq. (1). The second procedure consists in prescribing
a constant conditional failure probability P(Fj/Fj�1) for the different
levels and then, calculating the different Cj values corresponding to
these levels. The value of Cj of level j is the one for which the ratio
between the number of realizations for which G < Cj and the num-
ber of realizations Ns of this level (which is identical for the differ-
ent levels), is equal to the prescribed value P(Fj/Fj�1). In this paper,
the second procedure is used. Notice that, for simplicity in nota-
tions, the constant conditional failure probability P(Fj/Fj�1) will be
referred to as p0 later on. The algorithm of the SS approach can
be described by the following steps:

(1) Generate a realization of the vector ‘s’ of M random variables
by MCS according to the target PDF Pt.

(2) Using the deterministic model, calculate the system re-
sponse corresponding to this realization.

(3) Repeat steps 1 and 2 until obtaining a prescribed number Ns

of realizations of the vector ‘s’ and the corresponding system
response values. Then, evaluate the corresponding values of
the performance function to obtain the vector
G0 ¼ fG1

0; :::;G
k
0; :::;G

Ns
0 g. Notice that the values of the perfor-

mance function of the different realizations are arranged in
an increasing order in the vector G0. Notice also that the sub-
scripts ‘0’ refer to the first level (level 0) of the subset
simulation.

(4) Prescribe a constant conditional failure probability p0 for all
the failure regions Fj (j = 1,. . ., m-1) and evaluate the first
failure threshold C1 which corresponds to the failure region
F1 where C1 is equal to the [(Ns � p0) + 1]th value in the
increasing list of elements of the vector G0. This ensures that
the value of P(F1) will be equal to the prescribed p0 value.

(5) Among the Ns realizations, there are [Ns � p0] ones whose
values of the performance function are less than C1 (i.e. they
are located in the failure region F1). These realizations are
used as ‘mother realizations’ to generate additional [(1�p0)-
Ns] realizations of the vector ‘s’ using Markov chain method
based on Metropolis–Hastings algorithm. These new real-
izations are located in the second level (level 1 in Fig. 1).

(6) The values of the performance function corresponding to the
realizations obtained from the preceding step are listed in an
increasing order and are gathered in the vector of perfor-
mance function values G1 ¼ fG1

1; :::;G
k
1; :::;G

Ns
1 g.

(7) Evaluate the second failure threshold C2 as the [(Ns � p0) +
1]th value in the increasing list of elements of the vector G1.Fig. 1. Nested failure domain.
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