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a b s t r a c t

The inherent spatial variability of soils is one of the major sources of uncertainties in soil properties, and
it can be characterized explicitly using random field theory. In the context of random fields, the spatial
correlation between the values of a soil property concerned at different locations is represented by its
correlation structure (i.e., correlation functions). How to select a proper correlation function for a partic-
ular site has been a challenging task, particularly when only a limited number of project-specific test
results are obtained during geotechnical site characterization. This paper develops a Bayesian model
comparison approach for selection of the most probable correlation function among a pool of candidates
(e.g., single exponential correlation function, binary noise correlation function, second-order Markov cor-
relation function, and squared exponential correlation function) for a particular site using project-specific
test results and site information available prior to the project (i.e., prior knowledge, such as engineering
experience and judgments). Equations are derived for the proposed Bayesian model comparison
approach, in which the inherent spatial variability is modeled explicitly using random field theory. Then,
the proposed method is illustrated and validated through simulated cone penetration test (CPT) data and
four sets of real CPT data obtained from the sand site of the US National Geotechnical Experimentation
Sites (NGES) at Texas A&M University. In addition, sensitivity studies are performed to explore the effects
of prior knowledge, the measurement resolution (i.e., sampling interval), and data quantity (i.e., sampling
depth) on selection of the most probable correlation function for soil properties. It is found that the pro-
posed approach properly selects the most probable correlation function and is applicable for general
choices of prior knowledge. The performance of the method is improved as the measurement resolution
improves and the data quantity increases.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Geotechnical materials are natural materials, and their proper-
ties are affected by various spatially variable factors during their
formation processes, such as parent materials, weathering and ero-
sion processes, transportation agents, sedimentation conditions,
etc. [1]. Geotechnical properties, therefore, vary spatially, which
is usually known as ‘‘inherent spatial variability’’ [2,3]. The inher-
ent spatial variability has been considered as one of the major
sources of uncertainties in geotechnical properties [4–8]. Such spa-
tial variability can be modeled explicitly in probabilistic analysis
(e.g., [2,3,9–11]) and reliability-based design (RBD) (e.g., [12,13])
of geotechnical structures using random field theory. In the context
of random fields, the spatial correlation between values of a
geotechnical property at different locations is represented by its

correlation structure (i.e., correlation functions) (e.g., [2,3,14,15]).
Proper selection of the correlation function for the geotechnical
property is a prerequisite for random field modeling of inherent
spatial variability in probabilistic analysis and RBD of geotechnical
structures.

Several theoretical correlation functions have been used in liter-
ature to analyze geotechnical data and/or to model inherent spatial
variability of soil properties in probabilistic analysis and RBD of
geotechnical structures, such as single exponential correlation
function (SECF), binary noise correlation function (BNCF), second-
order Markov correlation function (SMCF), and squared exponential
correlation function (SQECF) (e.g., [16–21]). A suitable correlation
function can be selected by fitting these theoretical correlation
functions to the sample autocorrelation function (SACF) estimated
from site observation data and comparing the goodness-of-fitting
of different correlation functions (e.g., [18–21]). To enable a mean-
ingful estimate of the SACF, a large number of site observation data
is usually required. This poses a challenge in the selection of the
correlation function for a given site because, generally speaking,
only a limited number of project-specific test results are obtained
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during geotechnical site characterization, particularly for projects
with medium or relatively small sizes.

In addition, accuracy of the SACF usually deteriorates as the
separation distance between a data pair increases because the
number of data pairs used to estimate SACF decreases as the sepa-
ration distance increases (e.g., [16]). In practice, the theoretical cor-
relation function is usually only fitted to the initial part of the
SACF, i.e., the part of the SACF with relatively small separation dis-
tances (e.g., [18]). Therefore, the information on the spatial corre-
lation provided by data pairs with relatively large separation
distances is not taken into account, and the limited number of site
observation data obtained during geotechnical site characteriza-
tion is somehow wasted.

This paper develops a Bayesian model comparison approach for
selection of the most probable correlation function of a soil prop-
erty concerned among a pool of candidates for a given site. The
proposed Bayesian approach makes full use of available informa-
tion about the site, including not only all project-specific test data
but also site information available prior to the project (i.e., prior
knowledge, such as local engineering experience and sound engi-
neering judgments), and explicitly models the inherent spatial var-
iability of soil properties. It starts with random field modeling of
the inherent spatial variability of soil properties, followed by
development of the Bayesian model comparison approach and
description of its implementation procedure. Then, the proposed
Bayesian model comparison approach is illustrated using four sets
of cone penetration test (CPT) data obtained from the sand site of
the US National Geotechnical Experimentation Sites (NGES) at
Texas A&M University. In addition, sensitivity studies are per-
formed using simulated CPT data to validate the effectiveness of
the proposed approach and to explore the effects of prior knowl-
edge, measurement resolution (i.e., sampling interval), and data
quantity (i.e., sampling depth) on the selection of spatial correla-
tion functions.

2. Random field modeling of inherent spatial variability

Random field theory [2,3] is applied in this study to model the
inherent spatial variability of a soil property x within a statistically
homogenous soil layer. Consider, for example, a one-dimensional
lognormal random field x(D), where D is the depth and x is a log-
normal random variable with a mean l and standard deviation
r. By the definition of lognormal random variables (e.g., [22]),
the logarithm (i.e., n(D) = ln[x(D)]) of x(D) is a normal random var-
iable with a mean lN ¼ ln l� r2

N=2 and standard deviation

rN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ r=lð Þ2
h ir

. In the context of random fields, the spatial

correlation between the values of n(D) at different depths is char-
acterized by a correlation function M. For example, Fig. 1 shows
four correlation functions that are commonly used in geotechnical
literature (e.g., [2,3,16–19]), including single exponential correla-
tion function (SECF, see the solid line), binary noise correlation
function (BNCF, see the dashed line), second-order Markov correla-
tion function (SMCF, see the solid line with circles), and squared
exponential correlation function (SQECF, see the solid line with tri-
angles). For SECF, BNCF, SMCF, and SQECF, the correlation coeffi-
cient q(DD) between n(Di) and n(Dj) at respective depths of Di

and Dj is calculated, respectively, as (e.g., [2,3,17–19])

SECF : qðDDÞ ¼ expð�2jDDj=kÞ ð1Þ

BNCF : qðDDÞ ¼
1� jDDj=k for jDDj 6 k

0 otherwise

�
ð2Þ

SMCF : qðDDÞ ¼ ð1þ 4jDDj=kÞ expð�4jDDj=kÞ ð3Þ
SQECF : qðDDÞ ¼ exp½�p DD=kð Þ2� ð4Þ

in which k = correlation length, also known as ‘‘scale of fluctuation’’
(e.g., [2,3]); DD = |Di � Dj| = separation distance between Di and Dj.

Let n = [n(D1), n(D2), . . .,n(Dk)]T be a vector of n(D) at k different
depths. Because n(D) is considered as normally distributed with a
mean lN and standard deviation rN, n is a Gaussian vector with a
mean vector lNl and covariance matrix C ¼ r2

NR, in which l is a vec-
tor with k components that are all equal to one and R is the corre-
lation matrix of n(D). Then, n can be written as (e.g., [8,10,11,23])

n ¼ lNlþ rNLT Z ð5Þ

in which Z is a standard Gaussian random variable vector; L is a k-
by-k upper-triangular matrix obtained by Cholesky decomposition
of R. The (i, j)th entry of R represents the correlation coefficient be-
tween n(Di) and n(Dj) at respective depths of Di and Dj, and it is gi-
ven by a correlation function M, such as Eqs. (1)–(4). Selection of the
correlation function of a soil property concerned is, therefore, a pre-
requisite for characterization of the inherent spatial variability of
soil property. The next section presents a Bayesian model compar-
ison approach to select the most probable correlation function
among a pool of candidates (e.g., Eqs. (1)–(4)) for a given site using
both project-specific test results and prior knowledge.

3. Bayesian model comparison

Let n̂ ¼ n̂ðD1Þ; n̂ðD2Þ; . . . ; n̂ðDkÞ
h iT

be a set of n(D) values mea-

sured at different depths D1, D2, . . .,Dk, respectively. n̂ can be con-

sidered as a realization (or sample) of n. As indicated by Eq. (5), n̂

contains the information on the possible correlation function
(e.g., Eqs. (1)–(4)) of n(D). Consider, for example, a number NCF of
possible correlation functions MJ, J = 1, 2, . . .,NCF (e.g., NCF = 4 for
Eqs. (1)–(4)). For a given set of project-specific test results n̂, the
plausibility of a correlation function MJ is defined by its occurrence
probability PðMJjn̂Þ, J = 1, 2, . . .,NCF, conditional on n̂. The most prob-

able correlation function M�
J for a given n̂ has the maximum occur-

rence probability PðMJjn̂Þ. Hence, M�
J can be determined by

comparing the values of PðMJjn̂Þ for the candidate correlation func-

tions and selecting the one with the maximum value of PðMJjn̂Þ.
Using the Bayes’ Theorem, PðMJjn̂Þ is written as (e.g., [8,22,24–

28])

Fig. 1. Four correlation functions commonly used in geotechnical engineering
(After [17]).
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