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a b s t r a c t

When designing monitoring systems and planning inspections, engineers must assess the benefits of the
additional information that can be obtained and weigh them against the cost of these measures. The
value of information (VoI) concept of the Bayesian statistical decision analysis provides a formal frame-
work to quantify these benefits. This paper presents the determination of the VoI when information is
collected to increase the reliability of engineering systems. It is demonstrated how structural reliability
methods can be used to effectively model the VoI and an efficient algorithm for its computation is pro-
posed. The theory and the algorithm are demonstrated by an illustrative application to monitoring of a
structural system subjected to fatigue deterioration.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

When it is required to make decisions under uncertainty and
risk, one often has the possibility to gather further information
prior to making the decision. Such information reduces the uncer-
tainty and thus facilitates improved decision making. This explains
the success of structural health monitoring (SHM), advanced
inspection methods, remote sensing and other monitoring tech-
niques for civil infrastructures, to which I will refer collectively
as monitoring systems.

As experienced engineers are well aware, collecting the infor-
mation comes at a price that is not always justified by its benefit.
Unfortunately, this is often discovered only after the installation
of a monitoring system. A mathematical framework exists for
quantitatively assessing the benefit of a monitoring system prior
to installing it: the value of information (VoI) analysis from Bayes-
ian statistical decision theory [1–3] that has been considered by ci-
vil and structural engineers since the early 1970s [4]. The late Prof.
Wilson Tang was one of the first to notice the potential of Bayesian
methods and VoI concepts to optimize engineering decisions [5–7].
In his paper published in 1973 [5], he described Bayesian updating
of probabilistic models of flaws with inspection results, which pre-
ceded the optimization of inspections in aircraft and offshore
structures subject to fatigue deterioration in the 1970s and 80s
[8–12]. These works were among the first applications of Bayesian
decision analysis for optimizing the collection of information in an
industrial context. Similar efforts were made in the field of

transportation infrastructure management, based on Markovian
deterioration models [13]. In recent years, the optimization of
monitoring systems through explicit computation of the VoI has
found increased interest in various fields of civil and infrastructure
engineering. Explicit computation of the VoI for optimizing inspec-
tions and structural health monitoring in deteriorating structures
was proposed in [14–18]. Optimization of sensor placement based
on VoI has been studied in [19]. In geotechnical engineering, which
has always been strongly relying on monitoring, the effect of infor-
mation quality has been investigated [20]; an explicit quantifica-
tion of the VoI for head monitoring of levees is described in [21].
In the field of natural hazards, the VoI concept has been applied
for prioritizing post-earthquake inspections of bridges [22] and
for quantifying the value of improved climate models when
designing offshore structures against extreme wave loads [23].
VoI analysis is and has been applied in many other fields of engi-
neering and science, including oil exploration [24] and environ-
mental health risk management [25].

Determining the VoI requires significant modeling and compu-
tational efforts. Computationally efficient evaluations of the VoI
was considered mainly in the field of machine learning and artifi-
cial intelligence [19,26–28]. In these areas, prediction models used
for the VoI computations are typically based on known probabilis-
tic dependences among a potentially large number of random vari-
ables. In contrast, in infrastructure and civil engineering, prediction
models are often based on advanced physically-based models,
which describe the monitored phenomena. As an example, when
planning the monitoring of a bridge, one can make use of detailed
mechanical models of the structure. Furthermore, the monitoring
is often installed not to guide the every-day operation of the sys-
tem, but for early detection of deterioration or damages that may
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impair the safety of the system. These applications motivate the
combination of the VoI concept with structural reliability methods,
which were developed to efficiently compute the probability of
system failure via advanced physically-based models.

This paper presents the modeling and computation of VoI based
on structural reliability methods. A modeling framework is pro-
posed, which is especially suitable when probabilistic physically-
based models of the monitored systems and processes are avail-
able, e.g. in structural engineering applications. On this basis, a
computationally efficient algorithm is developed for estimating
the VoI. The framework and the algorithm are illustrated through
an application to monitoring of a structure subject to fatigue dete-
rioration, which demonstrates the effectiveness and efficiency of
the proposed approach. The paper closes with a discussion on
the difficulties encountered in determining the VoI in realistic
engineering problems.

2. Value of information analysis

2.1. Decision-theoretic framework

As a premise, I assume that all consequences (costs of monitor-
ing, mitigation actions as well as failure consequences) can be ex-
pressed either in monetary values or in a common measure of
utility U. I adopt the classical expected utility framework [29]
according to which an optimal decision under uncertainty is the
one maximizing the expected utility E[U]. For simplicity, I further
restrict the presentation to situations in which all consequences
can be expressed as monetary costs C and in which utility is pro-
portional to �C, corresponding to a risk-neutral decision maker.
The optimal decision is thus the one that minimizes the expected
cost E[C]. It is straightforward to adapt the methods presented in
this paper to the case of a risk-averse decision maker or to situa-
tions with non-monetary consequences, if preferences of the deci-
sion maker can be expressed through utility functions.

Following the classical structural reliability modeling frame-
work [30], the uncertainty associated with the phenomena under
consideration is characterized by a vector X of random variables.
The relation between X and the events of interest is a deterministic
one, e.g. the failure event is described through the limit state func-
tion gF(X) as F ¼ fgFðXÞ 6 0g. In this framework, model uncertain-
ties are included through additional random variables in X.

In a classical decision analysis under uncertainty, the goal is to
identify the actions a that minimize E[C], e.g. the maintenance
and repair actions a that ensure an optimal balance between
the cost of a and the risk associated with failure. Additionally,
information can be collected prior to making the action decision
a. Therefore, a so-called test decision e is made on what informa-
tion to collect (e stands for experiments). This is, e.g., a decision
on the design of a monitoring system or a decision on the inspec-
tion schedule. The extended decision problem is to find the
combination of monitoring decision e and action decision a that
minimizes E[C]. This problem is known in the literature as prepos-
terior decision analysis [4]. These problems can be graphically
modeled through decision trees and influence diagrams, Fig. 1.
The decision tree explicitly depicts all possible states of random
variables and decisions. In contrast, the influence diagram
provides a more concise representation, which additionally re-
flects the causal relations between the random variables and
the decisions. Implementations of the influence diagram for
computing the VoI can be found in [16,31].

This paper focuses on the computation of the value of informa-
tion (VoI) of a given monitoring system. The optimization of the
monitoring system (the test decision e) is not explicitly considered.
However, the VoI is the total expected net benefit of a given

monitoring system and is thus the central part of any preposterior
decision analysis. The optimal monitoring system is the one max-
imizing the VoI minus the cost of monitoring.

In the following, the optimization of the decision a is presented
prior to considering the monitoring results. This follows the logic
that monitoring results enable improved action decisions and that
their benefit can thus only be quantified when explicitly modeling
the action decision.

2.2. Prior decision optimization

Before applying monitoring, the optimization of the decision a
must be based on the prior knowledge, characterized through
the prior probability distribution of X. The prior optimization
problem is:

aopt ¼ arg min
a

EX½cða;XÞ� ¼ arg min
a

Z
X

cða; xÞfXðxÞdx: ð1Þ

c(a, x) is the cost associated with a given set of actions a and
realization x, and EX denotes the expectation with respect to X.
Throughout the paper I use the notation

R
X dx ¼

R1
�1 . . .R1

�1 dx1 . . . dxn.
In engineering decision problems involving reliability, the con-

sequences typically depend on discrete events describing the sys-
tem state, such as failure F or a set of damage levels (e.g., in
performance-based earthquake engineering). In the structural
reliability framework, these events correspond to domains in the
outcome space of X. Let E1, E2, . . ., Em denote the mutually
exclusive, collectively exhaustive system states in the general case.
(If only failure F is of interest, it is E1 = F and E2 ¼ F.) The optimiza-
tion problem can then be written as

aopt ¼ arg min
a

Xm

i¼1

cEi
ðaÞPrðEiÞ: ð2Þ

Here, cEi
ðaÞ is the cost associated with event Ei and decision a. Let

Cprior denote the expected cost associated with this optimal decision
aopt, i.e.

Cprior ¼min
a

Xm

i¼1

cEi
ðaÞPrðEiÞ ¼

Xm

i¼1

cEi
ðaoptÞPrðEiÞ: ð3Þ

Fig. 1. The basic decision problem when planning monitoring and inspection
measures: (a) decision tree and (b) corresponding influence diagram. Here it is
assumed that the cost of monitoring ce(e) and the cost of the action and system
state c(a, x) are additive.
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