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a b s t r a c t

The paper presents the application of support vector regression (SVR) to accurate forecasting of the tan-
gential displacement of a concrete dam. The SVR nonlinear autoregressive model with exogenous inputs
(NARX) was developed and tested using experimental data collected during fourteen years. A total of 573
data were used for training of the SVR model whereas the remaining 156 data were used to test the cre-
ated model. Performance of a SVR model depends on a proper setting of parameters. The SVR parameters,
the kernel function, the regularization parameter and the tube size of e-insensitive loss function are spec-
ified carefully by the trail-and-error method. Efficiency of the SVR model is measured using the Pearson
correlation coefficient (r), the mean absolute error (MAE) and the mean square error (MSE). Comparison
of the values predicted by the SVR-based NARX model with the experimental data indicates that SVR
identification model provides accurate results.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dam parameters monitoring through installed instrumentation
is the most important part of a dam safety program [1]. These
parameters include seepage flows, seepage water clarity, pore
pressure, deformations or movements, water levels, pressures,
loading conditions, temperature variations, etc. Physical interpre-
tation of significant indicators of the structural behaviour is the
key factor to control and management of the dam system.

Structural health monitoring of dams is based on acquisition of
displacement measurements [2]. Deformation monitoring can re-
flect the structural behaviour of the dam [3]. Timely and accurate
analysis and prediction of the dam displacement is an essential
part of the dam safety control.

The structural response of the dam is affected by many factors
including reversible (hydrostatic pressure and temperature) and
irreversible factors (due to residual deformations associated with
creep, alkali-aggregate reaction and other nonlinear effects that
may jeopardize the structural integrity [4]). There are different ap-
proaches to developing models for prediction of the nonlinear
structural behaviour of the dam, and they include deterministic,
statistical and hybrid models, which combine the first two. Deter-
ministic modelling requires solving nonlinear partial differential

equations for which closed form solutions may be difficult or
impossible to obtain [5]. As a result, numerical methods, such as
the finite element method, the finite-difference method and the fi-
nite volume method are employed. Advantages of the statistical
methods include simplicity of formulation, speed of execution,
availability of any kind of correlation between independent and
dependent variables [6,7]. Performance of the existing statistical
regression models is not satisfactory when multicollinearity and
influential outliers exist between the variables [8].

Artificial intelligence techniques such as artificial neural net-
works, fuzzy logic systems, neuro-fuzzy systems and genetic algo-
rithms have been used as effective alternative tools for modelling
of complex civil engineering systems and they have been widely
used for prediction and forecasting. Furthermore, in dam engineer-
ing, these techniques have been successfully used to obtain the
optimal shape of dams [9,10] as well as for modelling of the dam
behaviour [11–14].

System identification of dams is a significant field of structural
engineering [15]. Displacement of the dam is a nonlinear time-
varying function of hydrostatic pressure, temperature and other
unexpected unknown causes. Nonlinear black-box system identifi-
cation can be applied to develop complex nonlinear models. NARX
input–output model can be used to describe nonlinear structural
behaviour of the dam [14]. The output of the NARX model depends
on the previous values of itself and inputs. Determination of the
model order and the model structure of a general NARX model is
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a difficult task even for a single-input and single-output system
[16]. Selection of a near-optimal set of time lags is an important
and difficult computational task [17]. The main problem in model
identification is to approximate the unknown function within a gi-
ven accuracy from some sampled data sequences. This function is
approximated by some general function approximators such as
neural networks [18] or neuro-fuzzy systems [19,20].

SVR has recently been used in the framework of the nonlinear
black-box system identification [21–24]. In the present work,
SVR is used for structural identification of the dam. The support
vector machine (SVM) is a new technique that has been intensively
used to solve pattern classification and function–approximation
problems in many areas. Hammer and Gersmann [25] showed
the universal approximation capability of SVMs with various
kernels, including Gaussian, several dot products, or polynomial
kernels. The SVM implements the structural risk minimization
principle, which has been shown to be superior to the traditional
empirical risk minimization principle implemented by most of
the conventional neural networks. Training of the SVM is equiva-
lent to solving a linearly constrained quadratic programming prob-
lem so that the solution of the SVM is globally optimal and unique
[26]. The support vector machine is based on the statistical learn-
ing theory [27]. The SVM was originally developed for binary
classification problems. Support vector regression (SVR) presents
an application of the SVM for function estimation [28,29].

The procedure based on neuro-fuzzy modelling was presented
and discussed for the radial displacement of an arch dam by
Rankovic et al. [30].

The objective of this study is to develop a support vector regres-
sion-based NARX model for the dam tangential displacement pre-
diction and to demonstrate how it is applied to identify complex
nonlinear relationships between the input and output variables.

2. Case study

Construction of the hydropower plant Djerdap 2 officially began
in 1977, and the first units were put into operation in 1985. This
hydropower plant consists of a power plant, water lock, spillway
and non-spillway dam, as well as a dam crossing in the middle
of which there is a border between two countries.

The spillway dam consists of seven spillways, each 21 m wide.
Seven pendulums were installed to measure radial and tangential
deformations. In this paper, the tangential displacement of the
points in the first spillway and fourth spillway of the dam is ana-
lysed with the proposed method. These points are denoted by F1
and F4. The data set included 729 data samples. They were divided
into training and test sets. The data from January 1997 to Decem-
ber 2007 were used to train, and the data from January 2008 to
December 2010 were used to test, Fig. 1.

3. NARX system identification

An important and useful class for simulation of dam structural
behaviour is the nonlinear autoregressive with exogenous inputs
model [14,31]. The nonlinear model for prediction of the dam tan-
gential displacement has two inputs (u1, u2) and one output (zm)
and can be described as follows:

zmðkÞ ¼ fmðuðkÞ; hÞ ð1Þ

where zm(k) is the output of the model, k is the time instant, fm is
the unknown nonlinear function, uðkÞ ¼ ðzðk� 1Þ; zðk� 2Þ;
:::; zðk� nzÞ; u1 ðk� 1Þ;u1ðk� 2Þ; :::;u1ðk� nu1Þ; u2ðk� 1Þ;u2ðk� 2Þ;
:::;u2ðk� nu2ÞÞ is the regression vector, h is the parameter vector,
nu1 and nu2 denote the numbers of the lags of the inputs (u1, u2)
and nz denotes the number of the lags of the output (z).

The problem with identification of the nonlinear structural
behaviour is to approximate the unknown function fm in (1) from
the sampled data fðu1ðkÞ; u2ðkÞ; zðkÞÞjk ¼ 1;2; :::; pg, where p is
the number of the sample data. Identification of nonlinear struc-
tural behaviour is a difficult task because the nonlinear function
can be assumed in different forms. In this paper, support vector
regression is used for approximation of the unknown nonlinear
function.

The selection of an appropriate set of input variables and the
regressors defined by the input and output lags is important for
obtaining a high-quality model. Many of the described methods
for regressor selection are based on heuristics, expert knowledge,
statistical analysis [32], or a combination of these.

The input vector to the SVR model consists of z and u1 and u2

which are past values of the output and input, respectively:

xT ¼ zðk�1Þ;zðk�2Þ; :::;zðk�nzÞ;u1ðk�1Þ;u1ðk�2Þ; :::;u1ðk�nu1Þ;½
u2ðk�1Þ;u2ðk�2Þ; :::;u2ðk�nu2Þ� ð2Þ

The output is y = zm(k).

4. Support vector regression

Consider a training data set fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxp; ypÞg
2 RN � R, where xi is a vector of input variables and yi is the
corresponding output value, p is the number of training data
points. In e-SV regression [33], the goal is to find a function f(x) that
has the most e deviation from the actually obtained targets yi for all
the training data.

The SVM approximates the function in the following form:

f ðxÞ ¼ hw;/ðxÞi þ b with w 2 RN; b 2 R ð3Þ

where w denotes the weight vector, /(x) represents the high-
dimensional feature spaces which is nonlinearly transformed from
the input space x, h�,�i denotes the dot product between w and /

(x) and b is a bias.
The weight vector (w) and the bias (b) can be estimated by min-

imizing the regularized risk function:

RðCÞ ¼ 1
2
jwj2 þ C

1
p

Xp

i¼1

Leðf ðxiÞ; yiÞ ð4Þ

In the regularized risk function, the first term 1
2 jwj

2 is the regu-
larized term that controls the function capacity. The second term
1
p

Pp
i¼1Leðf ðxiÞ; yiÞ is the empirical error. C is the regularization con-

stant that determines the trade-off between the empirical risk and
the regularization term. In the SVM regression, e-insensitive loss
function is most commonly used:

Leðf ðxiÞ; yiÞ ¼
jf ðxiÞ � yij � e; jf ðxiÞ � yijP e
0; otherwise

�
ð5Þ

where e is a constant called the tube size.
Minimization of (4) is equivalent to solving the following primal

optimization problem:

minimize
1
2
jwj2 þ C

1
p

Xp

i¼1

ðni þ n�i Þ ð6Þ

subject to,

yi � hw;/ðxiÞi � b 6 eþ ni; i ¼ 1;2; ::::; p
hw;/ðxiÞi þ b� yi 6 eþ n�i ; i ¼ 1;2; ::::; p
ni; n

�
i P 0; i ¼ 1;2; . . . ; p

8><
>:

Positive slack variables ni and n�i represent the distance from the
actual values to the corresponding boundary values of the e tube. A
schematic representation of the SVR using the e-insensitive loss
function is shown in Fig. 2.
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