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a b s t r a c t

This paper contributes to the structural reliability problem by presenting a novel approach that enables
for identification of stochastic oscillatory processes as a critical input for given mechanical models. The
proposed method is based on a graphical representation of such processes utilizing state of the art image
processing and pattern recognition techniques, leading to a set of finite rules that consistently identifies
those realizations of stochastic processes that would lead to a critical response of a given mechanical
model. To examine the validity of the suggested method, large sets of realizations of artificial non-
stationary processes were generated from known models, several criteria for critical response were
formulated and the results were statistically evaluated. The promising results suggest important applica-
tions that would dramatically decrease computational costs e.g. in the field of probabilistic seismic
design. Further examination may lead to a formulation of a new class of importance sampling techniques.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The necessity for adopting fully probabilistic design concepts
has become imperative when considering static loads [1,2]. On
the other hand, structural dynamics is still far from a practical uti-
lization of such concepts despite cheap contemporary computa-
tional costs. This is mainly due to the uncertain nature of
environmental loadings that have to be modeled as time-varying
phenomena, represented in this paper by non-stationary stochastic
oscillatory process as defined by Priestley [3].

It is a well-accepted fact that structures respond in a very un-
certain manner to probabilistically different ground motion events
while there is very limited a priori knowledge on the structural be-
havior. An implication is the necessity to perform the structural
analysis for each realization of the event separately, which makes
the Monte-Carlo based reliability analysis computationally unfea-
sible for some realistic assumptions, i.e. small probabilities and
large sample sizes.

There have been several recent attempts to avoid such reliabil-
ity problems in their full form. Moustafa [4] proposed a framework
for deriving optimal earthquake loads expressed as a Fourier series.
More recently, critical excitation methodologists propose to identi-

fy critical frequency content of ground motions maximizing the
mean earthquake energy input rate to structures (for details see
e.g. [5]). From a different perspective, Barbato et al. [6] approxi-
mate the first passage problem by formulating exact closed form
solutions for the spectral characteristics of random processes.
Macke et al. [7] present an importance sampling technique for ran-
domly excited dynamical systems.

Authors of this paper attempt to maintain the up-to-date con-
ceptually correct fully probabilistic concept [8] while reducing
the number of required analyses by means of the proposed identi-
fication framework. It is based on a non-traditional assumption
that there exists a finite set of rules capable of classifying synthetic
samples of stochastic processes according to their importance as a
critical input for a given mechanical model. Whether such sets of
rules could be formulated for an arbitrary system remains an open
problem for further research.

2. Development

The identification strategy follows a transparent image proces-
sing paradigm completely independent of structural dynamics,
thus representing a nontraditional option in the field. The reason
behind such argument is experimental, aiming at delivering a
simple and wide-purpose method.
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The main objective can be formulated as follows: find the
critical realization of a stochastic process from a target sample
set S under defined critical response criteria. In the following text
the symbol ? designates higher order mapping function, e.g.
x0 ? f(x0).

Suggested Small Training Set (STS) input format:

(i1) Finite set S of 1-dimensional stochastic process realizations ri

ri 2 hv1;v2; . . . ;v ti ð1Þ

S 2 hr1; r2; . . . ; rni ð2Þ

where vi can be an arbitrary value, e.g. acceleration values re-
corded in t time steps. The notation n is used for the size of S.

(i2) Arbitrary deterministic solver, typically extremely expensive
computational numerical integration, e.g. FEM, or reduced
meta-models such as MOR and POD [9],

FðriÞ !
N Solve

yi ð3Þ

returning an arbitrary scalar response quantity yi, e.g. a peak
displacement.

(i3) Arbitrary algorithm for 2-dimensional graphical representa-
tion G of ri. Among the two general options maintaining the
physicality of the G product is the evolutionary spectra [10]
or the wavelet–vector coefficients based scalogram [11] wd.
The latter is used in this paper due to preferable computa-
tional complexity, basic principles demonstrates sample
patterns at Figs. 1 and 2.

wdðriÞ !
maps

Gi ¼

cðiÞ1;1 � � � cðiÞt;1

..

. . .
. ..

.

cðiÞ1;o � � � cðiÞt;o

2
6664

3
7775 ð4Þ

Here the wavelet vector coefficients (1,. . .,o) are plotted as
rows of colorized rectangles ct,o, in which large absolute
values are shown darker and each subsequent row corre-

sponds to different wavelet index specifications. Note that
the actual choice of the mapping algorithm in this step is
quite immaterial for proper functioning of the method as
long as it allows a time-frequency decomposition of the
signal.

(i4) Parameters vector and admissible intervals fh1. . .(t � o)i,
mh1. . .ni, ph1. . .m/2i, qh1. . .mi

Proposed STS strategy steps:

(s1) Construct a training subset s randomly sampled from S hav-
ing the length m � n.

s 2 hr1; r2; . . . ; rmi ð5Þ

(s2) Solve the training subset s:

hFðr1Þ; Fðr2Þ; � � � ; FðrmÞi !
yields

sF 2 hy1; y2; � � � ; ymi ð6Þ

(s3) Create ranked minimum and maximum sets SF,min and
SF,max:

sF;min ¼ h1; . . . ;pith smallest elements in sF ð7Þ

sF;max ¼ h1; . . . ;pith largest elements in sF ð8Þ

(s4) Transform ri ’s corresponding to SF,min and SF,max into graphi-
cal representation

wdðrsF;min
Þ;wdðrsF;max Þ !

yieldshGmin;1; . . . ;Gmin;pi;hGmax;1; . . . ;Gmax;pi
ð9Þ

(s5) Find a finite set of rules R such that consistently maps the
s4) products to the corresponding few important (i.e. maxi-
mal or critical) response criteria. Note that a one-to-one cor-
respondence is likely unfeasible and the search domain can
be effectively narrowed by ignoring the pixels with constant
or random behavior. A simple specific form of R can be
attained by calculating the 2-dimensional correlation pat-
tern P using the Gmin and Gmax:

Fig. 1. Relationship between the signal and the G pattern. Horizontal axes represents time and is joined for both the signal and G. Vertical axis of G represents the equivalent
scales (octaves or frequency bands).

Fig. 2. Graphical representation (G) of L1 (left) and L2 (right) in the form of Wavelet Scalogram and visualized detected keypoints (R) described by radius, orientation and
contrast sign (circle, rotation and color). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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