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a b s t r a c t

New imprecise structural reliability models are described in this paper. They are developed based on the
imprecise Bayesian inference and are imprecise Dirichlet, imprecise negative binomial, gamma-exponen-
tial and normal models. The models are applied to computing cautious structural reliability measures
when the number of events of interest or observations is very small. The main feature of the models is
that prior ignorance is not modelled by a fixed single prior distribution, but by a class of priors which
is defined by upper and lower probabilities that can converge as statistical data accumulate. Numerical
examples illustrate some features of the proposed approach.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A probabilistic model of structural reliability and safety has
been introduced by Freudenthal [1]. Following his work, a num-
ber of studies have been carried out to compute the probability
of failure under different assumptions about initial information.
Briefly the problem of structural reliability can be stated as fol-
lows [2]. Let Y represent a random variable describing the
strength of a system and let X represent a random variable
describing the stress or load placed on the system. By assuming
that X and Y are defined on X = [xmin,xmax] and H = [ymin,ymax],
respectively, system failure occurs when the stress on the system
exceeds the strength of the system: W = {(x 2X, y 2H) : x P y}.
Here W is a region where the combination of system parameters
leads to an unacceptable or unsafe system response. Then the reli-
ability of the system is determined as R = Pr{X 6 Y}, and the unre-
liability is determined as U = Pr{X > Y} = 1 � R. Generally, we have
a function h(X) of n random variables X = (X1, . . . ,Xn) characteriz-
ing the stress. In this case, W = {(x 2Xn,y 2H) : h(x) P y}, where
x = (x1, . . . ,xn) is a value of X.

Uncertainty of parameters in engineering design has been suc-
cessfully modelled by means of interval analysis [3,4]. Several pa-
pers, [5,6], describe the fuzzy set and possibility theories to cope
with a lack of complete statistical information about the stress
and strength. Several structural problems solved by means of ran-
dom set theory have been scrutinized in [7–10]. The random set
theory provides us with an appropriate mathematical model of

uncertainty when the information about the stress and strength
is not complete or when the result of each observation is not
point-valued but set-valued, so that it is not possible to assume
the existence of a unique probability measure.

A more general approach to the structural reliability analysis
was proposed in [11,12]. This approach utilizes a wider class of
partial information about structural parameters, which includes
possible data about probabilities of arbitrary events, expectations
of the random stress and strength and their functions. The main
idea proposed in [11] is to use imprecise probability theory [13],
whose general framework is provided by upper and lower previ-
sions (expectations). They can model a variety of kinds of uncer-
tainty, partial information, and ignorance. At the same time, this
approach presupposes the existence of some probabilistic mea-
sures (precise or imprecise) of strength and stress. Often such char-
acteristics do not exist and the analyst has only some judgments or
measurements (observations) of values of stress and strength
themselves. Therefore, the first question is how to utilize the avail-
able information and to compute the structural reliability. The sec-
ond question is what to do if the number of judgments or
measurements is very small.

In this paper we describe new models for computing structural
reliability based on measurements of values of stress and strength
and taking account of the fact that the number of observations may
be rather small. The approach to developing the models is based on
using the imprecise Bayesian inference models [14]. These models
provide a rich supply of coherent imprecise inferences that are ex-
pressed in terms of posterior upper and lower probabilities. The
probabilities are initially vacuous, reflecting prior ignorance, be-
come more precise as the number of observations increase. All
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the models described in this paper are based on the assumption
that we find ourselves in the state of complete ignorance prior to
observations, which means that prior probabilities are vacuous,
i.e., the lower is equal to 0 while the upper is equal to 1.

In Sections 2–4 some basic and relevant concepts for the devel-
oped imprecise structural reliability models are briefly described.
Sections 5–8 describe the four new models. Some concluding notes
are given in Section 9.

2. Failure probability under complete information about the
stress and strength

Complete information about the stress and strength means
that there exist precisely known probability distribution functions
or densities of all random variables specifying the structural reli-
ability. Moreover, the second condition is that all the random
variables are statistically independent. The latter assumption is
rather restrictive and the results derived based on it should be
used with a great care if there are grounds to assume that the
variables are dependent. There are two pathways to overcome
this assumption. One is to assume complete ignorance of whether
the variables are dependent or not. This is how it was done in
[11] for the case of some known interval-valued probability mea-
sures of stress and strength. The other one is to assess the corre-
lation between the variables that will enter the expressions
explicitly. The either way is feasible but difficult to realise.
Numerical computations are probably the only possibility to ob-
tain the results. In the current study we did not attempt to ex-
plore this problem deeper.

Let qi be the probability density function of a random variable
Xi, qx be the joint density of a random vector X. Due to indepen-
dence of random variables, we can write qx(x) = q1 (x1) � � �qn(xn),
"x 2Xn.

Let qY be the density function of a random variable Y. The
cumulative distribution functions of the considered random vari-
ables are denoted as Fi, Fx(x), FY. Then the structural unreliability
is defined as the (n + 1)-multiple integral on the set W, i.e.

U ¼
Z
� � �
Z

W
qxðxÞqY ðyÞdxdy:

For every vector x, we can determine a set of values y which lead to
system failure, i.e. (x,y) 2W. If we denote this set W(x), then it is
obvious that W(x) = [0,h(x)]. Now the integral can be rewritten as
follows:

U ¼
Z
� � �
Z

Xn

Z
WðxÞ

qxðxÞqY ðyÞdxdy

¼
Z 1

0
� � �
Z 1

0
qxðxÞ

Z hðxÞ

0
qYðyÞdy

 !
dx

¼
Z 1

0
� � �
Z 1

0
qxðxÞFYðhðxÞÞdx:

The failure probability U can be regarded as the expectation of func-
tion FY(h(X)) of a random vector X having the density function qx,
i.e. U ¼ EqX

FY ðhðXÞÞ.
Stress Xand strength Y can be both negative and positive

depending on application. For the purpose of presentation we con-
sider nonnegative variables without loss in generality.

As an example, when h(x) = x and n = 1, we get the well-known
expressions for the failure probability

U ¼
Z 1

0
qXðyÞFY ðyÞdy ¼

Z 1

0
qY ðyÞð1� FXðyÞÞdy

¼ 1�
Z 1

0
qY ðyÞFXðyÞdy: ð1Þ

3. Bayesian inference

If we assume that a random variable has a probability distribu-
tion with the vector of unknown parameters b, then these param-
eters could be regarded as random variables with some probability
density p(b). In this case, the Bayesian approach could be applied
for computing distribution function of the random variable
FðxÞ ¼

R
H FðxjbÞ � pðbÞdb. Here H is the set of values of b.

More generally, the Bayesian approach is concerned with gener-
ating the posterior distribution of the parameters of interest given
both the data and some prior density for these parameters. Sup-
pose that the prior distribution p(b) represents our uncertainty
about the possible values of b prior to collecting any information
about the values of x = (x1, . . . ,xn) that could, for example, be inter-
preted as observed successive intervals between failures. Let p(xjb)
be the probability density function for the observed data x given b.
Then the posterior distribution p(xjb) as the conditional distribu-
tion of b given the observed data x is computed as p(bjx) /
p(x1jb) � � �p(xnjb) � p(b).

The prior distribution is often chosen in such a way to facilitate
the calculation of the posterior, especially through the use of con-
jugate priors. When the posterior distribution p(bjx) and the prior
distribution p(b) both belong to the same distribution family, p
is the conjugate prior for p.

A critical feature of any Bayesian analysis is the choice of a
prior or the choice of the parameters of the prior probability dis-
tribution, especially when one is completely ignorant about the
parameters. In this case, a non-informative prior has to be con-
structed. There is a set of methods for determining the non-infor-
mative priors in the literature. But every method has some
arguable shortcomings and can be used only in special cases.

Another approach to defining non-informative prior models,
which challenges conventional Bayesian analysis and which we
advocate, is based on defining a class M of prior distributions p
that is manifested through the lower P and upper P probabilities
of an event A as

PðAÞ ¼ supfPpðAÞ : p 2 Mg;
PðAÞ ¼ inffPpðAÞ : p 2Mg:

As pointed out by Walley [14], the classM under some conditions is
‘‘Not a class of reasonable priors, but a reasonable class of priors”.
This means that each single member of the class is not a reasonable
model for prior ignorance, because no single distribution can model
ignorance satisfactory. But the whole class is a reasonable model for
prior ignorance. When we have little prior information, the upper
probability of a non-trivial event should be close to one and the
lower probability should be close to zero. This means that the prior
probability of the event may be arbitrary from 0 to 1. The implica-
tion of using vacuous priors is twofold. On the one hand, quite a
large number of observations will be needed to reach a high enough
precision in the posterior probabilities to make them useful in prac-
tice. On the other hand, it is compelling to avoid introducing any
unjustifiable assumptions prior to observations and specifying
probability bounds on priors.

Following this setting the models described in this paper have
been developed.

4. Reliability under imprecise information in the form of p-
boxes

The outcome of the imprecise Bayesian inference is the lower F
and upper F distribution function of a random variable X such that
FðxÞ 6 FðxÞ 6 FðxÞ; 8x 2 R. These bounding functions define a set
M of distributions called also p-box.
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