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a b s t r a c t

This paper presents a spreadsheet computational framework for implementing an advanced Monte Carlo
method called Subset Simulation for uncertainty propagation that can provide better resolution for low
failure probability level at the same time retaining some robustness features of direct Monte Carlo. While
the efficiency of Subset Simulation has been demonstrated by numerous studies, attention in this work is
devoted to application robustness of the spreadsheet framework. This concern is relevant because
advanced Monte Carlo algorithms, or in general variance reduction techniques, gain their efficiency by
exploiting information about the problem, which may require intrusive exchange of information with
the system analysis model during the simulation process. To explore and authenticate implementation
issues, a prototype Visual Basic Application (VBA) package is developed that can perform efficient uncer-
tainty propagation by plugging as an Add-In into a spreadsheet that performs deterministic analysis. The
resulting uncertainty propagation process is non-intrusive, requiring immaterial modification of the
deterministic analysis spreadsheet. Operationally the proposed framework divides the whole process into
system modeling (deterministic analysis), uncertainty modeling (generation of random variables) and
uncertainty propagation (Subset Simulation). It is hoped that the development work can promote the
use of advanced Monte Carlo simulation tools for uncertainty propagation in the decision-making
process.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty propagation in engineering systems involves the
probabilistic assessment of system performance attributes given
a probabilistic modeling of the significant uncertainties and proper
deterministic modeling of system behavior [1–6]. It involves calcu-
lating the statistical average of response quantities of interest
which are formulated as probability integrals over the space of ran-
dom parameters. From a risk assessment perspective, the distribu-
tion tail of performance attributes is often of interest. The
performance of a proposed design in the presence of uncertainty
can be quantified in terms of the ‘failure probability’ or ‘perfor-
mance margin’ with respect to specified design objectives. Let
H 2 Rn denote the vector of random variables for which a probabil-
ity model is available, say, in terms of the joint probability density
function (PDF) pðhÞ: Without loss of generality, we assume that the
random variables are independent. After all, in applications corre-
lated random variables are generated by independent ones
through transformations. Many failure events in engineering risk

analysis can be formulated as the exceedance of a critical response
variable YðHÞ over some specified threshold level y [7], i.e.,

PðFÞ ¼ PðY > yÞ ¼
Z

F
pðhÞdh ð1Þ

Complementary to the failure probability is the performance
margin that corresponds to the percentile of a given risk tolerance
through which the risk tolerance of a decision maker manifests. For
example, the 90-, 99-, and 99.9-percentiles may provide a decision
maker with low-, medium-, and high-confidence estimates in the
upper-bound value of response, corresponding to a risk-tolerant,
risk-neutral, or risk-averse decision maker, respectively.

In realistic projects the system models to be analyzed have been
evolving with higher complexity and wider variety. Insights about
system behavior become less available and more costly to digest,
making analytical or semi-analytical solutions almost intractable.
In this context a robust uncertainty propagation method whose
applicability is insensitive to the problem nature and complexity
is most desirable. Direct Monte Carlo [8] is the most robust method
but it suffers from a lack of resolution at the distribution tail, i.e.,
rare event, which is often of interest in risk assessment problems.
Advanced reliability methods, often called ‘variance reduction
techniques’, have been developed over the years [9–13]. Their gen-
eral goal has been to minimize the number of system analyses (i.e.,
computation of system response) for producing estimates of
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acceptable statistical accuracy. There remains no general efficient
algorithm available, however, especially for complex systems.
The main difficulties come from: (1) the relationship between
the random variables and the performance attributes is only
implicitly known through point-wise system analysis; (2) there
are many random variables involved in the system; (3) information
about rare scenarios is required; and (4) there are many interactive
response variables in the description of performance criteria. The
first factor renders the system a ‘black-box’, requiring higher com-
putational efforts to understand its behavior. The second one in-
creases the dimension of integration of any statistical quantity of
interest. Any computational procedure based on numerically inte-
grating out the individual dimensions requires exponentially
growing computational effort and hence is not efficient for dimen-
sions greater than three.

Models for analyzing complex systems are characterized by a
large number of degrees of freedom, time-varying and response-
dependent nonlinear behaviour and increasingly governed by mul-
ti-disciplinary laws. Although the advent of computer technology
has allowed the analysis of complex systems for a given scenario
(i.e., one sample) to be performed with affordable computational
time, the same is not true for uncertainty propagation, since the
latter involves repeated analysis. Even if resources are available,
they should be deployed in a cost-effective manner that yields
most information on failure scenario of concern. In general, there
is a trade-off between efficiency and robustness of an advanced
simulation algorithm. This has motivated the recent development
of efficient yet robust algorithms for propagating uncertainties in
complex systems [12].

Software implementation of structural reliability algorithms
has received greater attention in parallel with development of
reliability methods. Software packages have been developed by
different institutions with different objectives and target applica-
tions, e.g., COSSAN [14], STRUCTUEL [15], CALREL [16] and NES-
SUS [17]. Excellent review can be found in a recent special
issue [18]. Motivated by the work of Low and Tang [19–21] that
developed spreadsheet implementation of first order reliability
method in structural and geotechnical engineering, this paper ex-
plores the spreadsheet implementation of an advanced Monte
Carlo method called Subset Simulation [22,23]. The motivation
for spreadsheet implementation stems from the wide variety of
practical problems and models that can be analyzed using spread-
sheet in modern office settings, spanning applications in geotech-
nical engineering [4], system engineering [24], financial
engineering [25], etc. On the other hand, while the spreadsheet
implementation of direct Monte Carlo has been well demon-
strated in commercial codes, e.g., @Risk [26], it is the intent of
this work to explore the implementation of Monte Carlo algo-
rithms of an advanced nature. The basic concern lies in whether,
or to what extent, one can decouple the modeling calculations
from those required by the advanced simulation algorithm, since
it is commonly recognized that the latter gains efficiency over di-
rect Monte Carlo by exploiting specific knowledge about the sys-
tem that often requires intrusive (and possibly problem-
dependent) exchange of information during simulation. It shall
be demonstrated that in the case of Subset Simulation it is possi-
ble to decouple the spreadsheet development into uncertainty
modeling (generation of random variables), system modeling
(deterministic analysis), and uncertainty propagation (Subset
Simulation), thereby allowing uncertainty propagation to be per-
formed in a non-intrusive robust manner.

The basic theory of Subset Simulation will be presented first,
followed by the framework of spreadsheet implementation. A
slope stability risk example in geotechnical engineering will be
used to illustrate the application of the proposed framework via
an in-house developed EXCEL Add-In.

2. Subset Simulation

Subset Simulation is an adaptive stochastic simulation proce-
dure for efficiently computing small tail probabilities [22,23]. Orig-
inally developed for dynamic reliability analysis of building
structures, it stems from the idea that a small failure probability
can be expressed as a product of larger conditional failure proba-
bilities for some intermediate failure events, thereby converting a
rare event simulation problem into a sequence of more frequent
ones. During simulation, conditional samples are generated from
specially-designed Markov chains so that they populate gradually
each intermediate failure region until they reach the final target
(rare) failure region.

Let Y be a given critical response for which P(Y > y) is of interest,
and 0 < y1 < y2 < � � � < ym ¼ y be an increasing sequence of inter-
mediate threshold values. It should be noted that considering a sin-
gle critical response leads to little loss of generality because
multiple failure criteria can be incorporated into a single one
[22]. By sequentially conditioning on the event {Y > yi}, the failure
probability can be written as.

PðY > yÞ ¼ PðY > y1Þ
Ym
i¼2

PðY > yijY > yi�1Þ ð2Þ

The raw idea stemming from this expression is to estimate
P(Y > y1) and {P(Y > yi|Y > yi�1): i = 2, � � �, m} by generating samples
of H conditional on {YðHÞ > yi: i ¼ 1; � � � ;m}. In the actual imple-
mentation, y1; � � � ; ym are generated adaptively using information
from simulated samples so that the sample estimate of PðY > y1Þ
and {PðY > yijY > yi�1Þ: i ¼ 2; � � � ;m} always correspond to a com-
mon specified value of the conditional probability p0 (p0=0.1 is
found to be a good choice). Subset Simulation is in fact a procedure
for generating estimates of performance margins corresponding to
pre-specified failure probability levels.

The efficient generation of conditional samples is highly-non-
trivial but pivotal to the success of Subset Simulation. It is made
possible through the machinery of a class of powerful algorithms
called Markov Chain Monte Carlo (MCMC) simulation [27–29]. In
MCMC, successive samples are generated from a specially-de-
signed Markov chain whose limiting stationary distribution tends
to the target PDF as the length of the Markov chain increases. An
essential aspect of the implementation of MCMC is the choice of
‘proposal distribution’ that governs the generation of the next sam-
ple from the current one and consequently the efficiency of the
algorithm. We shall come back to this after describing the overall
simulation procedure.

The Subset Simulation procedure for adaptively generating
samples of H conditional on {YðHÞ > yi: i ¼ 1; � � � ;m} correspond-
ing to specified target probabilities {PðYðHÞ > yiÞ ¼ pi

0:
i ¼ 1; � � � ;m} is summarized as follows. First, N samples {H0;k:
k ¼ 1; � � � ;N} are simulated by direct Monte Carlo, i.e., they are
i.i.d. as the original PDF. The subscript ‘0’ here denotes that the
samples correspond to ‘conditional level 0’ (i.e., unconditional).
The corresponding values of the response {Y0;k: k ¼ 1; � � � ;N} are
then computed. The value of y1 is chosen as the ð1� p0Þ � Nth value
in the ascending list of {Y0;k: k ¼ 1; � � � ;N}, so that the sample esti-
mate for PðF1Þ ¼ PðY > y1Þ is always equal to p0. Here, it is assumed
that p0 and N are chosen such that p0 � N is an integer.

Due to the choice of y1, there are p0 � N samples among {H0;k:
k ¼ 1; � � � ;N} whose response Y lies in F1 ¼ fY > y1g. These are
samples at ‘conditional level 1’ and are conditional on F1. Starting
from each of these samples, MCMC is used to simulate additional
ð1� p0Þ � N conditional samples so that there are a total of N condi-
tional samples at conditional level 1. The value of y2 is then chosen
as the ð1� p0Þ � Nth value in the ascending list of {Y1;k:
k ¼ 1; � � � ;N}, and it defines F2 ¼ fY > y2g: Note that the sample
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