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a b s t r a c t

The safety factor required to achieve certain reliability turns out to be related to the quantile of the nor-
malized performance index of interest. Quantile functions (quantiles as functions of design parameters)
are therefore essential to convert a reliability constraint into the equivalent safety-factor constraint. It is
shown in this paper that the estimation of these quantile functions can be achieved by fitting the tail of
the normalized performance index. In the cases where the tail varies drastically with the design param-
eters, a heuristic algorithm is developed to find a series of probability distributions to adaptively fit the
tails. Once these probability distributions are obtained, a series of quantile functions can be found to facil-
itate the conversion of the reliability constraint. Three examples are investigated to verify the proposed
approach. Although the theoretical bounds for the approach cannot be proved, the results show that the
approach can effectively convert reliability constraints of the three examples into equivalent safety-factor
constraints.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Reliability-based optimization (RBO) [1–5] has recently become
an important research area because of the need of making deci-
sions under uncertainties in engineering applications. One of the
difficulties encountered in RBO is related to the reliability con-
straints, to directly ensure which during the optimization algo-
rithm may require numerous reliability analyses. The required
computational cost can be unacceptable, rendering many realistic
RBO problems computationally intractable. One possible solution
is to convert these reliability constraints into non-probabilistic
ones by first estimating failure probability as a function of the de-
sign parameters. This approach was taken in Gasser and Schüeller
[2] and Jensen [5], where the logarithm of such a function is as-
sumed to be either linear or quadratic in the design parameters.
The similar approach was also taken with response surface meth-
ods or surrogate-based methods [6,7].

1.1. Connection between required safety factor and target failure
probability

Ching [8] proposed a novel approach to convert reliability con-
straints into non-probabilistic ones by using an equivalence theo-
rem between reliability and safety factor. He showed that a
reliability constraint can be converted into a safety-factor
constraint, and the required safety factor is exactly the 1� P�F

quantile of the ‘‘normalized” performance index (P�F is the target
failure probability). What follows reviews his findings. Let Z 2 Rp

be the uncertain variables of the target system and h 2 Rq be the
design parameters; F denotes the failure event: F � {R[Z, h] > 1},
where R[Z, h] is called the performance index; RðhÞ is a ‘‘nominal”
performance index: an example of RðhÞ is to take R[Z, h] but fix Z
at certain nominal values. The safety factor approach of design is
to enforce the following constraint:

g�ðhÞ � RðhÞ 6 1 ð1Þ

where g�(h) is the required safety factor; in general, it may depend
on h. On the other hand, the reliability-based design approach is to
enforce the following constraint during the design process:

PðR½Z; h� > 1jhÞ 6 P�F ð2Þ

A theorem developed in [8] states that the two constraints in (1)
and (2) are equivalent if the safety factor g�(h) is found by solving
the following relation:

PðGðZ; hÞ > g�ðhÞjhÞ ¼ P�F ð3Þ

where GðZ; hÞ ¼ R½Z; h�=RðhÞ is the ‘‘normalized” performance index.
Note that g�(h) is simply the 1� P�F quantile of G(Z, h). The proof of
this theorem can be found in [8]. Therefore, finding the required
safety factor corresponding to a certain target failure probability
is equivalent to finding a quantile of G(Z, h) .

The aforementioned theorem is practical only when g�(h) does
not vary with h, or equivalently, when the quantiles and hence
the distribution of G(Z, h) do not vary with h; otherwise, the prob-
lem of determining a h-dependent quantile g�(h) may be just as
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difficult as the original RBO problem. In the case where g�(h) is a
constant g�, the g� � P�F relation can be found by the following
equation:

PðGðZ; hÞ > g�Þ ¼ P�F ð4Þ

Note that h has been removed from the condition since the condi-
tional probability does not depend on h. In fact, h can be fictitiously
treated as random and uniformly distributed over a prescribed
allowable design region. Fig. 1 illustrates a scenario where the
quantiles of G(Z, h) do not vary with h. Note that the G level corre-
sponding to the p-quantile in the figure is exactly the required
safety factor corresponding to a target failure probability of 1 � p.

The key to the success of the theorem developed in [8] is a prop-
er choice of the nominal performance function RðhÞ: such a proper
choice can make the distribution (or quantiles) of GðZ; hÞ ¼ R½Z; h�=
RðhÞ invariant over h. In [8], it is argued that finding a nominal
function RðhÞ such that the distribution of G(Z, h) is roughly invari-
ant over h is usually not a difficult task: both RðhÞ ¼ R½EðZÞ; h� or
RðhÞ ¼ EZðR½Z; h�Þ are conjectured to be possible choices. This is
because the distribution of R[Z, h]/R[E(Z), h] or R[Z, h]/EZ(R[Z, h])
might not vary drastically with h due to the possible cancellation
effect between R[Z, h] and R[E(Z), h] (or EZ(R[Z, h])).

1.2. Difficult cases where the quantiles are not constant

However, there are cases where the above two choices of RðhÞ
are not proper, i.e. the quantiles of the resulting G(Z, h) vary signif-
icantly with h. See Fig. 2 for such a scenario. For these cases, the re-
quired safety factor to achieve a target failure probability P�F would
change with the design scenario h, rendering the theorem not
practical.

A slight modification of the theorem may resolve the aforemen-
tioned issue. Suppose the distribution of G(Z, h) varies with h, but
let us assume there exists a monotonically increasing mapping Lh

parameterized by h such that the distribution of Lh[G(Z, h)] is
invariant over h, i.e. such a Lh mapping somehow counteracts the
effect of G(Z, h). Under this assumption, g�(h) will not be a constant
but Lh[g�(h)] will be. This can be easily seen from the fact that

P�F ¼ PðGðZ; hÞ > g�ðhÞjhÞ ¼ PðLh½GðZ; hÞ� > Lh½g�ðhÞ�jhÞ ð5Þ

The last conditional probability term implies that Lh[g�(h)] must be
a constant k�. The k� value corresponding to a target failure proba-
bility P�F can then be found by solving

PðLh½GðZ; hÞ� > k�Þ ¼ P�F ð6Þ

where h has been removed from the condition and treated as ran-
dom and uniformly distributed over the prescribed allowable de-
sign region. Once k� is found, the required safety factor is simply
L�1

h ðk
�Þ. Therefore, it is not necessary to solve g�(h) for each design

scenario h but only necessary to solve for the constant k�.
It is proposed in [9] to take Lh as the estimated cumulative den-

sity function (CDF) of the tail of G(Z, h). This choice works because
any random variable after being transformed by its CDF will be
uniformly distributed over the [0, 1] interval. Therefore, under this
choice, the tail of Lh[G(Z, h)] will be roughly uniformly distributed
over [0, 1] regardless the value of h, hence the high quantiles of
Lh[G(Z, h)] are roughly invariant over h.

1.3. Focus of this study

For difficult cases, it is found that a single Lh function is usually
not enough to ensure the Lh[G(Z, h)] distribution to be invariant
over its entire tail region. Fig. 3 shows a scenario where the appli-
cation of a single Lh makes the low quantiles of Lh[G(Z, h)] relatively
constant but the high quantiles of Lh[G(Z, h)] can still vary with h.
This can happen, for instance, in a problem with switching failure
modes. Nonetheless, it is found that a series of L1

h ; L
2
h ; . . . ; Lm

h map-
pings can be more effective. This implies that solving a sequence
of g�1ðhÞ < . . . < g�mðhÞ that approach g�(h) may be possible, and this
is the main focus of this paper.

2. Reliability constraints

Given the design parameters h, the probability of failure of the
target system is

PðFjhÞ ¼
Z

XFjh

pðzjhÞdz ð7Þ

where p(z|h) is the probability density function (PDF) of Z; XF|h is the
failure domain in the Rp space: XF|h = {z:R[z, h] > 1}. The perfor-
mance index R[Z, h] does not necessarily define the complete col-
lapse of the system but the performance of the system, e.g.
serviceability and ultimate capacity. Throughout the paper, it is as-
sumed without loss of generality that R[Z, h] is positive and that
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Fig. 1. A scenario where the quantiles of G(Z, h) do not vary with h.
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Fig. 2. A scenario where the quantiles of G(Z, h) vary with h.
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Fig. 3. A scenario with highly variant G(Z, h).
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