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a b s t r a c t

The design of structures subjected to environmental loads, e.g. offshore platforms, ships, aircrafts, tall
buildings, would usually include analysis of combinations of load effects, for example, the combination
of stress components in structural joints. There are various yield criteria describing boundaries of struc-
tural element failure. This paper focuses on the development of efficient and accurate methods for esti-
mating extreme response statistics of combined load effect processes. This latter issue is crucial for
reliability design.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A prominent problem in the design of structures subjected to
random loads is to find methods for the combination of resulting
load effects at high and extreme response levels. In codified design
this is usually implemented as linear combination rules of specified
characteristic values of the individual load effects [1,2]. For nonlin-
ear dynamic structures, the precision level of such procedures
would seem highly questionable. One of the reasons for adopting
such simplified procedures is the complexity of the task of accu-
rately predicting the extreme value statistics of the combined load
effects, even in the case of linear combinations. Over the years, sev-
eral simplified procedures have been suggested for the linear com-
bination of load effects, most notably the Ferry Borges–Castanheta
method [3], Turkstra’s rule [1,4], the load coincidence method [2,5],
the square root of sum of squares (SRSS) method [5,6], and the point
crossing approximation method [1,7]. An important shortcoming of
these combination procedures is that they apply mainly to the case
of independent load effect components. An effort to extend Turk-
stra’s rule to dependent processes is described in [8].

The authors have developed an accurate and efficient method
for estimation of extreme values of stochastic processes [9–11].
The method is based on Monte Carlo simulation. It is therefore
eminently suitable for use in the estimation of extreme values of
combined stochastic load effect models since Monte Carlo simula-
tion is very often possible in such cases. In this paper we shall illus-

trate the usefulness and accuracy of the estimation method for two
specific load combination problems.

2. Combination of stochastic load effects

The general formulation of the load effect combination problem
to be studied in this paper is the following,

HðtÞ ¼ h½X1ðtÞ; ::;XNðtÞ�; ð1Þ

where the stochastic load effect component processes
X1ðtÞ; . . . ;XNðtÞ are combined according to a specified deterministic
function h to produce the load effect combination process HðtÞ. The
component processes may, e.g. derive from a vector solution pro-
cess of a dynamic model for the structural response of an offshore
platform to random waves. They may often be modelled as station-
ary stochastic processes, but that is not a requirement for the appli-
cation of the methods developed in this paper.

The typical problem to answer concerning the load effect com-
bination process HðtÞ is to determine the probability of exceeding a
critical threshold hc during a specified time interval T. Let us call
this the failure probability and denote it by pf ¼ pf ðTÞ. Hence, the
goal will be to find

pf ¼ 1� Prob½HðtÞ < hc; 0 6 t 6 T�: ð2Þ
In many practical applications, the structure of the process HðtÞ is
quite involved and the dimension N can be relatively high. This
makes a direct analytical approach virtually impossible in general.
In such cases, Monte Carlo simulations of some sort would seem
to be the most attractive way to provide estimates of the failure
probability. The purpose of this study is to describe a simple Monte
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Carlo technique, vastly more efficient than brute force standard
Monte Carlo simulations. A special procedure for estimating the ex-
tremes of HðtÞ will be described and its performance demonstrated.

3. Extreme value prediction

Let Nþðn; t1; t2Þ denote the random number of times that the
process HðtÞ upcrosses the level n during the time interval ðt1; t2Þ.
Assuming stationarity, E½Nþðn; t1; t2Þ� ¼ E½Nþðn; 0;1Þ� � ðt2 � t1Þ,
where E½Nþðn; 0;1Þ� is referred to as the mean rate of n-upcrossings
of HðtÞ. We shall use the notation mþðnÞ ¼ E½Nþðn; 0;1Þ�.

Let MðTÞ ¼maxfHðtÞ : 0 6 t 6 Tg denote the extreme value of
the process HðtÞ from Eq. (2) over the time interval of length T.
The cumulative distribution function of MðTÞ under the Poisson
assumption is given in terms of the mean upcrossing rate by the
following relation for a stationary short-term loading condition,

ProbðMðTÞ 6 nÞ ¼ expf�mþðnÞTg; ð3Þ

where mþðnÞ denotes the mean rate of upcrossings of the level n by
the process HðtÞ. Eq. (3) brings out the crucial role of the mean
upcrossing rate in determining the extreme value distribution.

For a long-term situation, which implies a nonstationary re-
sponse process, Eq. (3) is replaced by

ProbðMðTÞ 6 nÞ ¼ exp �
Z T

0
mþðn; tÞdt

� �
; ð4Þ

where mþðn; tÞ denotes the mean level upcrossing rate at time t, and
T equals the long term period considered. For practical purposes,
this is rewritten as [12]

ProbðMðTÞ 6 nÞ ¼ expf�T
Z

w
mþðn; wÞfWðwÞdwg; ð5Þ

where fWðwÞ denotes the long-term (ergodic) PDF of relevant
parameters W ¼ ðW1; . . . ;WkÞ. In the case of, e.g. offshore struc-
tures, typically W ¼ ðHs; TpÞ, where Hs=significant wave height
and Tp=spectral peak period, which implies that the long-term
PDF can be estimated from the scatter diagram of the sea states
at the specified location of the structure under study.

In practice, Eq. (5) would be expressed as

ProbðMðTÞ 6 nÞ � exp �T
Xm

j¼1

cjmþðn; wðjÞÞ
( )

; ð6Þ

where a suitable, representative choice of parameter values wðjÞ,
j ¼ 1; . . . ;m, has been made, and cj are suitable weight parameters.

In all cases, the approximation of the failure probability is ex-
pressed as pf ¼ 1� ProbðMðTÞ 6 hf Þ.

4. Empirical estimation of the mean upcrossing rate

In the previous section it was shown that the key to providing
estimates of the extreme values of the response process XðtÞ on
the basis of simulated response time histories, is the estimation
of the mean upcrossing rate. By assuming the requisite ergodic
properties of the response process for a short-term condition, the
mean upcrossing rate is conveniently estimated from the ergodic
mean value. That is, it may be assumed that,

mþðnÞ ¼ lim
t!1

1
t

nþðn; 0; tÞ; ð7Þ

where nþðn; 0; tÞ denotes a realization of Nþðn; 0; tÞ, that is, nþðn; 0; tÞ
denotes the counted number of upcrossings during time t from a
particular simulated time history for which the starting point
t ¼ 0 is suitably chosen. In practice, k time histories of a specified
length, T0 say, are simulated. The appropriate ergodic mean value
estimate of mþðnÞ is then

m̂þðnÞ ¼ 1
kT0

Xk

j¼1

nþj ðn; 0; T0Þ; ð8Þ

where nþj ðn; 0; T0Þ denotes the counted number of upcrossings of the
level n by time history no. j. This will be the approach to the estima-
tion of the mean upcrossing rate adopted in this paper.

For a suitable number k, e.g. k P 20, and provided that T0 is suf-
ficiently large, a fair approximation of the 95 confidence interval
for the value mþðnÞ can be obtained as CI0:95ðnÞ ¼ ðC�ðnÞ;CþðnÞÞ,
where

C�ðnÞ ¼ m̂þðnÞ � 1:96
ŝðnÞffiffiffi

k
p ; ð9Þ

and the empirical standard deviation ŝðnÞ is given as

ŝðnÞ2 ¼ 1
k� 1

Xk

j¼1

nþj ðn; 0; T0Þ
T0

� m̂þðnÞ
 !2

: ð10Þ

Note that k and T0 may not necessarily be the number and length of
the actually simulated response time series. Rather, they may be
chosen to optimize the estimate of Eq. (10). If initially, ~k time series
of length eT are simulated, then k ¼ ~kk0 and eT ¼ k0T0. That is, each
initial time series of length eT has been divided into k0 time series
of length T0, assuming, of course, that eT is large enough to allow
for this in an acceptable way. The consistency of the estimates ob-
tained by Eq. (10) can be checked for large values of n by the obser-
vation that Var½Nþðn; 0; tÞ� ¼ mþðnÞt since Nþðn; 0; tÞ is then a Poisson
random variable by assumption. This leads to the equation

ŝðnÞ2 ¼ 1
k

Var
Xk

j¼1

Nþj ðn; 0; T0Þ
T0

" #
¼ mþðnÞ

T0
; ð11Þ

where fNþ1 ðn; 0; T0Þ; . . . ;Nþk ðn; 0; T0Þg denotes a random sample with
a possible outcome fnþ1 ðn; 0; T0Þ; . . . ;nþk ðn; 0; T0Þg. Hence, ŝðnÞ2=k �
mþðnÞ=kT0. Since this last relation is consistent with the adopted
assumptions, it could have been used as the empirical estimate of
the sample variance in the first place. It is also insensitive to the
blocking of data discussed above since kT0 ¼ ~keT . However, the
advantage of Eq. (10) is that it applies whatever the value of n,
and it does not rely on any specific assumptions about the statistical
distributions involved.

Assuming now that we have obtained empirical estimates of the
mean upcrossing rate, either for a short-term or a long-term condi-
tion, the problem then becomes one of optimal use of the informa-
tion available. The solution to this problem proposed in the present
paper is based on the observation that for most of the dynamic sys-
tems met in practical applications, it is possible to make a specific
assumption about the behaviour of the mean n-upcrossing rate as a
function of the level n. This is based on the underlying assumption
that the appropriate asymptotic extreme value distribution for the
response data under study is the Gumbel distribution [13,14]. As
will be demonstrated in the next section, the mean upcrossing rate
tail, say for n P n0, behaves in a manner largely determined by a
function of the form expf�aðn� bÞcg (n P n0) where a, b and c
are suitable constants. Hence, as discussed in detail in [9], it may
be assumed that

mþðnÞ � qðnÞ expf�aðn� bÞcg; n P n0; ð12Þ

where the function qðnÞ is slowly varying compared with the expo-
nential function expf�aðn� bÞcg for tail values of n. By plotting
log j logðmþðnÞ=qðnÞÞj versus logðn� bÞ, it is expected that an almost
perfectly linear tail behaviour will be obtained. Now, as it turns
out, the function qðnÞ can be largely considered as a constant for tail
values of n. This suggests a linear extrapolation strategy obtained by
replacing qðnÞ by a suitable constant value, q say.
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