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a b s t r a c t

Reliability analysis is necessary in bridge design to determine which parameters have the most signifi-
cant influence on the structural response to applied loadings. To support finite element reliability appli-
cations, analytical response sensitivities are derived with respect to uncertain material properties, girder
dimensions, reinforcing details, and moving loads by the direct differentiation method (DDM). The result-
ing expressions have been implemented in the general finite element framework OpenSees which is well
suited to the moving load analysis of bridges. Numerical examples verify the DDM response sensitivity
equations are correct, then a first-order reliability analysis shows the effect uncertain parameters have
on the interaction of negative moment and shear force near the supports of a continuous reinforced con-
crete bridge girder. A unique contribution is the treatment of moment–shear interaction using Lamé
curves with foci calculated from MCFT equations. In addition, the analysis demonstrates non-seismic
bridge engineering applications that have been developed in the OpenSees framework.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of structural performance and modeling the re-
sponse of girder members under moving vehicle loads are essential
in bridge design. Modeling assumptions and natural randomness in
material properties, geometry, and loading make the girder re-
sponse uncertain. This uncertainty is taken into account by load
and resistance factors [1]; however, these aggregate factors do
not indicate how the bridge response will change as a function of
changes in individual parameters that may be of interest to a de-
signer. Reliability analysis is required to assess the effect parame-
ter variations will have on bridge response and to determine which
parameters control the response. Repeated analyses with per-
turbed parameters lead to the response sensitivity; however, when
there is a large number of parameters, this approach can be com-
putationally intense [2].

Several researchers have used reliability methods based on
Monte Carlo simulation as an assessment tool for highway bridges
[3–5]. First- and second-order reliability methods (FORM and
SORM) represent alternative approaches to probabilistic assess-
ment. In these methods, it is necessary to find the most probable
failure point by solving a constrained optimization problem. Sev-
eral algorithms are available to solve such problems and their com-
mon characteristic is the need to compute the gradient of the

structural response, or response sensitivity, in order to find the fail-
ure point. When finite element analysis is used to evaluate the per-
formance function for reliability methods, it is often difficult to
implement the software that is necessary to compute gradients
of the finite element response.

Most gradient-based finite element software instead rely on fi-
nite difference calculations where the analysis is called repeatedly
for every realization of the uncertain parameters. In addition to the
computational inefficiency of repeated analyses, this approach can
lead to inaccurate search directions depending on the size of the
parameter perturbations. A more accurate and efficient approach
to evaluate gradients in reliability analysis is the direct differenti-
ation method (DDM), which is based on the exact differentiation of
the equations that govern the structural response [6]. The response
sensitivity equations are implemented alongside the ordinary fi-
nite element response equations and are computed at the same
precision rate without repeated analyses.

The development of the finite element software framework
OpenSees [7] represents one of the first attempts to characterize
all major sources of uncertainty in finite element analysis and to
compute analytic response sensitivity using an object-oriented ap-
proach [8,9]. OpenSees was developed for earthquake engineering
applications and several researchers have used the framework to
assess the seismic response of bridges. The OpenSees framework
is suitable to the repetitive nature of moving load analysis since
users build and analyze models via commands added to the fully
programmable Tcl scripting language [10]. As a result, OpenSees
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is suited to developing applications for moving load reliability
analysis.

The objective of this paper is to use the well-established re-
sponse sensitivity modules of OpenSees to assess the reliability
of bridge girders subjected to moving loads. The presentation be-
gins with a derivation of the sensitivity formulation for material
properties, section dimensions, reinforcement details, and moving
load parameters in bridge girders. The DDM approach for moving
loads is verified by comparison with finite difference calculations
and a first-order reliability analysis of bridge girder moment–
shear interaction concludes the paper. In the reliability analysis,
a third-order Lamé curve whose foci are determined from MCFT
equations represents the limit state function for moment–shear
interaction.

2. Governing response sensitivity equations

Response sensitivity calculations by the DDM consist of analyt-
ical differentiation of the equations that govern the structural re-
sponse. In this study, the structural response is found by solving
the equations of static equilibrium. Impact factors approximate dy-
namic load effects. The equilibrium equations are described in
terms of the vector, H, which contains the uncertain material, geo-
metric and load parameters of a structural model

PrðUðHÞ;HÞ ¼ Pf ðHÞ ð1Þ

The nodal displacement vector, UðHÞ, depends on the parameters,
H, and load history. The resisting force vector, Pr , which is assem-
bled from element contributions by standard finite element proce-
dures, depends on the structural parameters explicitly, as well as
implicitly via the nodal displacements. The vector, Pf , contains no-
dal loads, which also may depend on the parameters in H.

Considering the chain rule of differentiation, the derivative of
Eq. (1) with respect to a single parameter, h, in H, is:

KT
@U
@h
þ @Pr

@h

����
U
¼ @Pf

@h
ð2Þ

where the tangent stiffness matrix, KT ¼ @Pr=@U, is the partial
derivative of the resisting force vector with respect to the nodal dis-
placements. The derivative of the nodal load vector, @Pf =@h, is non-
zero only if the parameter, h, represents a nodal load. The vector,
@Pr=@hjU, is the conditional derivative of the resisting force vector
under the condition that the nodal displacements U are held fixed.
This vector is assembled from the conditional derivative of local
forces, @q=@hjv , from each element in the structural model in the
same manner as the resisting force vector itself. The nodal response
sensitivity is then found by solving the following system of linear
equations:
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This solution is repeated for each parameter in the vector H, reusing
the factorization of KT . Full details of the DDM equation assembly
and solution procedures are given in [11], including the recovery
of other response derivatives from the nodal solution in Eq. (3).

3. Bridge girder modeling approach

In a general finite element setting, the most common approach
to compute the moment and shear response of bridge girders is to
subdivide each span into multiple elements with nodes corre-
sponding to critical locations. Moving loads are taken into account
as statically equivalent nodal forces and the bending moment and
shear force at each critical location are determined from rigid body
equilibrium at the element ends.

An alternative approach is taken in this study, where each span
is considered as one force-based element [12] whose integration
points coincide with critical locations. Using this integration ap-
proach, it is straightforward to link bending moment and shear
forces to a constitutive model rather than relying on rigid body
equilibrium [13]. Furthermore, moving loads are taken into ac-
count as part of the element, rather than nodal, equilibrium equa-
tions. The force-based formulation and its associated response
sensitivity are described in the remainder of this section.

3.1. Force-based element formulation

Force-based beam elements are formulated in terms of vectors,
q ¼ ½MI MJ�T and v ¼ ½hI hJ�T , that represent the end moments and
end rotations, respectively, of the beam, as shown in Fig. 1. At
every section along the element, there is a bending moment and
shear force, sðxÞ ¼ ½MðxÞ VðxÞ�T , and the corresponding curvature
and shear deformation, eðxÞ ¼ ½jðxÞ cðxÞ�T . Without loss of general-
ity, axial effects are omitted.

Equilibrium between section forces, basic forces, and moving
loads is satisfied in strong form:

sðxÞ ¼ bðxÞqþ spðxÞ ð4Þ

The matrix, b, contains interpolation functions for the moment and
shear forces along the beam.

bðxÞ ¼
x=L� 1 x=L

1=L 1=L

� �
ð5Þ

The vector, sp, in Eq. (4) describes the section forces due to member
loads. For the case of a moving point load, this vector is described in
terms of the location and magnitude of the load in the statically
determinate basic system. Since moving loads are considered part
of the element equilibrium equations in the force-based formula-
tion, they are taken into account in Pr and @Pr=@hjU rather than Pf

and @Pf =@h when assembling Eqs. (1) and (3), respectively.
Based on the principle of virtual forces, the element deforma-

tions, v, are obtained in terms of section deformations, e, along
the element.

v ¼
XNp

j¼1

bT
j ejwj ð6Þ

where bj � bðxjÞ and ej � eðxjÞ are the interpolation function and
the deformation evaluated at the jth section along the element, with
location, xj, and integration weight, wj.

The element flexibility matrix is obtained by linearization of Eq.
(6) with respect to basic forces:

f ¼ @v
@q
¼
XNp

j¼1

bT
j fsj

bjwj ð7Þ

where fs is the section flexibility matrix. The flexibility matrix in Eq.
(7) is inverted to give the element stiffness matrix, k ¼ f�1, for sub-
sequent assembly in the tangent stiffness matrix, KT , of Eq. (2). Full
details of the force-based element implementation are given in [14].

Fig. 1. Simply supported basic system for beam finite elements.
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