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This paper addresses the model selection issue often encountered in the process of calibrating reliability-
based geotechnical resistance factors. A predictive model must be assumed for the purpose of calibrating
resistance factors based on geotechnical in-situ test data. A question is raised by this research: which pre-
dictive model should we choose? What type of probability distribution model should we pick to model

the model uncertainties? Those may be important questions to ask because the calibration results depend
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on the assumed predictive and probabilistic models. A full probabilistic framework is proposed in this
research to resolve the model selection issue as well as to calibrate the geotechnical resistance factors.
Two examples of geotechnical real dataset are used to illustrate the model selection issue and to demon-
strate the use of the proposed methods. The proposed methods may contribute to code calibration based
on geotechnical in-situ test data.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Traditionally, geotechnical designs are usually achieved by the
safety factor approach, which accounts for uncertainties with an
empirical basis. Safety factor alone is not a consistent measure of
uncertainties: it does not rigorously address how reliable the de-
signed system is. As a simple example, two different geotechnical
designs with the same factor of safety are usually not equally safe.
Mathematically, safety factor is not a consistent indicator of safety
status: the safety factor of the same limit state may change
depending on the mathematical expression of the limit state func-
tion [1].

More recently, reliability-based design approaches have
emerged as a new geotechnical design paradigm because reliability
is a consistent measure of uncertainties. For reliability-based de-
signs, one designs a geotechnical system so that its reliability is
in an acceptable range. Moreover, a single factor, called the resis-
tance factor, is often used to quantify resistance uncertainties to
facilitate reliability-based designs.

A common way of calibrating resistance factors based on geo-
technical in-situ load test data is described as follows. Given the ob-
served resistances of m independent in-situ load tests {C;:i=
1,...,m} and the corresponding predicted resistances {R;:i=
1,...,m}, the m resistance ratios {C;/R;:i=1,...,m} are com-

* Corresponding author. Tel./fax: +886 2 29373851.
E-mail address: jyching@gmail.com (J. Ching).

0167-4730/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.strusafe.2009.01.003

puted, and their mean value and coefficient of variation (c.0.v.)
are estimated. By assuming lognormality or Gaussianity for the ra-
tio, resistance factors can be calibrated with a simple probability
analysis. This process of calibrating resistance factors have been
implemented in [2-5].

A necessary step for the above procedure is to select a deter-
ministic predictive resistance model, denoted by r(Z), where Z
contains all parameters necessary to compute the resistance, e.g.:
soil properties, model parameters, etc. The predictive models re-
flect our belief on the behavior of the target geotechnical system.
For instance, when a resistance factor for vertical bearing capacity
of a pile is calibrated, a model capable of predicting the vertical
capacity of the pile, e.g.: a SPT-N-based model, should be chosen
a priori.

1.1. Selection of predictive model - a real database of pile proof load
tests

Due to the uncertainties in geotechnical engineering, the chosen
geotechnical predictive model is critical for calibrating resistance
factors. However, the common procedure of calibrating resistance
factors usually does not address the model selection issue: how do
we know the chosen predictive model is plausible? A heuristic argu-
ment to resolve this issue is to compare the variability of the resis-
tance ratios of various predictive models, and the model with the
lowest variability is considered to be the best model. However, this
heuristic argument causes counter-intuitive conclusions when we
studied a real database of pile proof load tests, described as follows.
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A real database containing the proof load tests of 33 reinforced
concrete driven piles in the west-coast region in Taiwan was stud-
ied. Each load test dataset contains the following information:
(a) the actual ultimate vertical resistance of the pile determined
by the Davisson’s method, (b) the configuration of the pile, includ-
ing the diameter and length, and (c) the soil profile and measured
soil properties nearby the pile location, e.g.: measured unit weight,
measured SPT-N value, measured undrained shear strength, etc.
Based on the pile configurations, soil profile, and measured soil
properties for the 33 test piles, the ultimate vertical resistances
of the piles are predicted using three predictive models, listed in
Table 1 [6].

The axial capacity of the pile (pile resistance) can be calculated
as

Qu=Q+Q =) fiAAs+qphAs (1)

where Q, = ultimate pile resistance, Qs = skin resistance of the pile
shaft, Q, = point resistance at pile tip, f; = unit skin resistance stress,
¢p = unit point resistance stress, As = surface area of pile shaft, A, =
cross-section area of pile tip. There are two common methods of
calculating f; and qp: the static method and the SPT-N value method.
These three models listed in Table 1 are developed primarily based
on the Taiwan’s foundation design code for building [7]. The first
two models are the recommended practice in the current design
code. The third model adopts a combination of design values rec-
ommended by the American Petroleum Institute [8], Kulhawy
et al. [9], and Meyerhof [10].

Notice that in common practice, the predicted resistances
{Ri:i=1,...,m} are computed based on the measured soil prop-
erties. Compared with the actual resistances {C; :i =1,...,m}, the
m resistance ratios {C;/R; :i=1,...,m} are computed, and their
mean value and c.o.v. are listed in Table 1. It is seen that the
SPT-N model results in the smallest resistance ratio variability,
which is rather counter-intuitive. However, should the SPT-N mod-
el be the best model among the three models? Later, it will be clear
that when a more rigorous treatment is taken, the concluded best
model will change. The key argument is in the following issue: the
predicted resistances {R;:i=1,...,m} should have been com-
puted based on the actual soil properties rather than the measured
ones.

1.2. Selection of probabilistic model of resistance ratios

Another issue regarding model selection happens as we choose
the probabilistic model for the resistance ratios. As it will be seen
in the examples, the choice of the type of the probability density
function (PDF) of the resistance ratios has a certain effect on the
calibrated resistance factors. In most literature, the lognormal dis-
tribution is often chosen as the PDF of the resistance ratios. With-
out verification, the adequacy of this choice might be questionable.

Table 1
The three deterministic predictive models adopted for the pile load test dataset.

1.3. Focus of this paper

The focus of this paper is to provide a consistent and rigorous
framework of selecting models for the purpose of calibrating resis-
tance factors based on in-situ test data. The proposed full probabi-
listic framework is able to resolve the model selection issue for
both the deterministic predictive models and probabilistic models.
Moreover, the proposed framework can not only select the best
model but also estimate the relation between the target reliability
index and required resistance factor, i.e. accomplish the calibration
of resistance factor at the same time. Our goal is to provide techni-
cal guidelines for geotechnical code calibration based on in-situ
test data.

The structure of the paper is as follows: First the main idea of
model selection will be discussed. An indicator called “model like-
lihood” will be proposed to quantify the plausibility of a chosen
model. At the same time, a method of estimating the relation be-
tween the target reliability index and resistance factor will be pre-
sented. Finally, two examples of resistance factor calibration will
be used to demonstrate the model selection issues.

1.4. Notations

In the forthcoming discussions, the following notations will be
used: a capitalized letter denotes an uncertain variable; the lower
case letter denotes a fixed value; the same lower case letter with
a hat denotes a sampled or observed value of the uncertain variable.
For instance, R denotes the uncertain resistance; r denotes a fixed
value for the resistance;  denotes a sampled or observed value of R.

There are however some exceptions: the capitalized letter M is
reserved to denote a chosen model; N is reserved to denote size
(e.g., sample size); P denotes probability; H denotes entropy, etc:
they are not uncertain variables. Furthermore, we will constantly
use the notation Ry, to denote the dataset {R;:i=1,...,m}, and
similar notations will be taken for other variables. Some Greek let-
ters, including {u, d,0}, means either uncertain variables or their
fixed values depending on the context of the presentation.

2. Model selection based on in-situ test data

Let the in-situ test data be {¢; : i =1,...,m}, where ¢; € R is the
observed resistance of the i-th test, and let z; € R" be the measured
soil parameters at the i-th test site (n; is the number of soil param-
eters). Let {M,:n=1,...,Ny} be the Ny chosen models for the
dataset.

2.1. Model likelihood as model plausibility

One can quantify the relative plausibility of each model with
P(Mp,|¢1.m), the probability that M, is true conditioning on the data

Model Skin friction End bearing Resistance ratio statistics
Average Coefficient of variation
SPT-N Clay: f; = S,% Sand: f; = N/3 < 15T/m? Clay: q;, = 9Sy; Sand: g, = 30N < 1500T/m? 0.99 0.19
Static #1 Clay: fy = aS,%; Sand: f; = ka’, tan é < fmax” Clay: g, = 9Sy; Sand: g, = 07,Ny < qimax” 1.16 0.23
Static #2 Clay: f; = «S,%; Sand: f; = ko', tand < fmax® Clay: q, = 9S,; Sand: q, = ay,Ng < qmaxf 0.85 0.23

Remarks: S, is the undrained shear strength of clay, N is the SPT-N value of sand, and N is the modified SPT-N value.

a

o suggested by Tomlinson [11].

b fax suggested by DM7-2 [12]; k and 6 = 0.67¢' suggested by Taiwan code [7].
¢ Ny and g, suggested by DM7-2 [12].

4 o suggested by API [8].

€ fmax and k suggested by API [8]; § = 0.9¢' suggested by Kulhawy et al. [9].

f Ng suggested by Meyerhof [10]; gp.x Suggested by API [8].
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