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Random Field theory has emerged in recent years to model the statistical correlation of resistance in concrete
structures and to determine its influence on the probability of structural failure. A major shortcoming in the
work carried out to date is the spatial variability and corresponding correlation associated with applied traffic
loads. In this paper the influence of spatial correlation of both traffic load and resistance is considered in the con-
text of bridge safety assessment. The current study, explores, the nature of the problem by three theoretical
examples. As a general trend, examples show that while traffic loads are weakly correlated, load effects are

Ilgzm/grrgsﬁem strongly correlated as the same heavy vehicle often causes extremes of load effect in different parts of the bridge
Spatial which is due to the transverse sharing of load (measured here using a load sharing factor).
Variability Itis found that the strength of correlation of load effect depends greatly on the load sharing factor which is treated
Correlation in a simple way in many studies. In a more sophisticated beam-and-slab bridge example, load sharing factors are
Autocorrelation derived from a finite element analysis to assess transverse load sharing, and are shown to vary by girder number,
Traffic girder segment and by load location. Despite the fact that load effect at points along the length of a bridge is
\];3;’]3[ strongly correlated, the combined influence of correlation in load and resistance on probability of failure is small.
© 2015 The Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.
1. Introduction damage mechanisms such as corrosion-induced cover cracking and

An accurate assessment of the remaining service life of a structure
requires information about the structure and its load and a simulation
model which is able to incorporate this information into a safety analy-
sis. The simulation should account for various sources of uncertainty in
modelling such as time-dependent variation of structural performance,
randomness in loading, and variability of material and geometrical
properties. This requires the use of probabilistic methods in a structural
safety analysis. Two types of uncertainty, namely the aleatory and
the epistemic, are necessary for an accurate probabilistic analysis [4].
Whereas randomness (or aleatory uncertainty) cannot be reduced,
improvement in knowledge or in the accuracy of predictive models
will reduce the epistemic uncertainty [3]. Probabilistic reliability analy-
sis permits the inclusion of these uncertainties into a safety analysis.

In recent times, probabilistic and reliability-based approaches have
been widely used to quantify bridge safety [1,6,9,12,13,28,40-45,49,
54]. While the focus of much of this work has been on the probabilistic
description of homogeneous properties, less effort has been directed
towards the modelling of the spatial correlations of load and resistance.
It is well established that the material properties of a structure and
structural dimensions are spatially variable, associated with workman-
ship and environmental conditions. This results in spatially distributed
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spalling. Traffic load and particularly the stresses due to the load, are
also spatially correlated.

Allowing for spatial correlation in probabilistic calculation is
achieved by Random Field (RF) theory, and the terms RF and spatial
variability are used synonymously in the literature. In the RF analysis,
the random field is discretised into large numbers of spatially correlated
discrete random variables. The structural member is divided into small
segments and spatial variation within a segment is neglected. It is im-
plicit that deterioration at a point increases the probability of deteriora-
tion at adjacent points. Recent work has demonstrated the advantage of
incorporating spatial variability into stochastic models to predict the
likelihood and extent of corrosion damage in reinforced concrete (RC)
structures [18,23,38,40,41,43,46].

Engelund and Serensen [10] consider spatial variation of the vari-
ables associated with the critical threshold for initiation of corrosion of
reinforcement, i.e., the coefficient of diffusion of chloride and surface
chloride concentration. They estimate the distribution of the time to
initiation of corrosion using the First Order Reliability Method (FORM)
and Second Order Reliability Method (SORM) analyses. Stewart [37]
considers the spatial variability of pitting corrosion in RC beams. RC
beams are discretised into series of segments in one-dimension (1D)
random fields and maximum pit depths are generated for each reinforc-
ing steel bar in each element.

Malioka and Faber [25] suggest that corrosion initiation and propa-
gation are spatially variable due to the general trend seen within
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concrete batches and workmanship during construction of RC struc-
tures. The authors then present a random field approach to model the
spatial variability of concrete permeability and use this within a reliabil-
ity analysis to predict the percentage of a structure that will exhibit deg-
radation at a specified point in time.

Spatial variability research carried out to date has been mainly
focused on predicting the performance of corroding structures and spa-
tial variability of the common parameters such as material, dimension
and environmental properties [2,7,17,18,24,26,38,52,55]. A major short-
coming in the work to date is that the spatial variability and correspond-
ing correlation associated with applied loads and load effects has not
been allowed for.

Analysis of measured traffic data shows there are patterns of
correlation and interdependence between vehicle weights, speeds and
inter-vehicle gaps, both within lanes and between adjacent lanes in
same-direction traffic [31]. Correlation between weights of successive
vehicles can arise from a number of causes. There are times of the day
at which heavy vehicles are more likely to travel, and these intra-day
patterns are one reason why there is a weak but non-zero level of corre-
lation between vehicle weights within each lane. Furthermore, heavy
vehicles from the same company can sometimes travel together.

In the work by Nowak [29], a number of simplifying assumptions are
made - for instance, that one in 15 heavy trucks has another truck
side-by-side, and that for one in 30 of these multiple-truck events, the
two trucks have perfectly correlated weights. A heavy truck is defined
as one with a Gross Vehicle Weight (GVW) in the top 20% of measured
truck weights. It is calculated that the maximum load effect in 75 years
is caused by two trucks side-by-side, with each truck having a GVW of
85% of the maximum individual GVW in 75 years. As Kulicki et al. [20]
note, the assumptions used are based on limited observations, and no
data is utilised for the assumptions on weight correlation; they are
entirely based on judgment.

Sivakumar et al. [35] refine the definition of side-by-side events to
include two trucks with headway separation of +18.5 m (60 ft),
and also consider the influence of the bridge length. Sivakumar
et al. [34], citing Gindy and Nassif [14], extend this further by classi-
fying multiple-presence events as side-by-side, staggered, and follow-
ing or multiple. They present statistics, derived from weigh-in-motion
(WIM) measurements, for the frequency of occurrence of these
events for different truck traffic volumes and bridge spans. They
describe a method for estimating site-specific bridge loading which
uses multiple-presence probabilities calculated either directly from
WIM data or estimated from traffic volumes using reference data col-
lected at other sites. It is assumed that there is no correlation between
weights in adjacent lanes and that the GVW distribution is the same
in both lanes. The latter assumption, in particular, has been shown to
be inconsistent with measurements [31].

OBrien and Enright [31] introduce ‘scenario modelling’ as a method
of simulating traffic that is relatively simple to apply. It is found that,
even though traffic load is very slightly correlated, load effects are
strongly correlated and gaps in adjacent lanes are closely linked. The
correlated traffic is found to give a better fit to the measured data than
models which assume no correlation. A least squares measure is used
to quantify the goodness of fit of the two simulation models to the mea-
sured load effects. For this purpose, ratios which compare the goodness
of fit of simulated daily maximum load effects from the uncorrelated
and smoothed bootstrap model are averaged across all relevant load
effects and bridge lengths. In this comparison ratios significantly greater
than 1 mean that the smoothed bootstrap model gives a better fit. It is
found that in most cases the ratio is higher than 1.5 [31].

In this paper, three numerical examples are presented, of
varying complexity, to explore the spatial variability of load and
load effect and the spatial variability of resistance, and examine the
effect of these correlations on the probability of failure. First, a
single-span ‘bridge’ consisting of two side-by-side beams is consid-
ered (i.e., transverse interaction is ignored). Correlation of resistance

and load is examined for a segment at mid-span of the bridge. Single
point loads are applied on each beam. In the second example, point
loads are again used on a single-span bridge made up of two side-by-
side beams. However, in this case, the loads are assumed to travel across
the bridge and their relative position is allowed to vary randomly to
better simulate actual traffic loading. The effect of considering all seg-
ments, rather than just the mid-span, is also investigated. Finally, a
more realistic example is considered that illustrates the same concepts
identified in the simpler examples. In this final example, a probabilistic
load model is applied to a 2D beam and slab (girder) bridge. Like the HL-
93 model, there is a moving three-axle truck combined with a uniformly
distributed load (UDL). The truck weight and the intensity of the UDL
are assumed to be from Weibull distributions with parameters that
give an approximate match with measurements collected on 20 m
bridge in The Netherlands. In other words, these three examples inves-
tigate the following unanswered issues: (1) effect of load correlation on
load effect correlation and hence probability of failure; (2) effect of load
sharing factor on load effect correlation and hence probability of failure;
(3) the effect of combined load and resistance correlation on probability
of failure; (4) sensitivity of probability of failure to correlation coeffi-
cient of load and resistance and order of magnitude; and (5) effect of
considering the possibility of element failure which are not necessarily
at the mid-span for a simply supported bridge.

For this study, the authors combine models that allow for the spatial
variability of resistance and the spatial variability of load and load effect.
The influence of load correlation on probability of failure is investigated
and its interaction with correlation of resistance.

2. Nature of correlation
2.1. Correlation coefficient for load and resistance

In the three examples considered in the current study, the random
variables include the following: (i) loads on each lane, and (ii) resis-
tances for each segment of each lane. For example, in the second exam-
ple, a two-lane bridge has 14 segments in each lane, and two loads (one
each on lanes 1 and 2) giving twenty eight resistances. Each random
variable is assigned a probability density function (PDF) fx;(x;). In this
study, the Pearson coefficient of linear correlation, py; is used as a mea-
sure of the degree of linear dependence between the two variables and
is referred to as the “coefficient of correlation” throughout this paper. In
the current paper, the traffic load is assumed to be independent of dis-
tance and it is correlated using the constant correlation coefficient, pp.
In this study, P stands for load, S for load effect resulting from P, and R
refers to resistance. For resistance, two different correlation terms are
included: constant and distance-dependent:

PR(T) = Pro -+ (1—pRo>exp<— (;—j)z— (g)2> (1)

where pg, represents the constant component of correlation
(e.g., workmanship will vary from site to site). The second term relates
to inter-segment distances: dy = 6x/v/m; d, = 0, /\/m, where 0, and 0, are
termed ‘scales of fluctuation’ and quantify the extent of the spatial cor-
relation in the x and y directions respectively. The terms, Tx = Xj,1 —X;;
Ty = ¥j.1—Y; are distances between centres of segments j and j + 1 in
the x and y directions respectively [24]. Eq. (1) is referred to as the
autocorrelation function [15,18,24,50]. It determines the correlation
coefficient between two segments separated by distance 7 and is repre-
sentative of the spatial correlation between the segments. As the
distance between correlated segments increases, the correlation
coefficient reduces.

To illustrate the effect of the distance-dependent term in Eq. (1),
Fig. 1 shows the one-dimensional form of the function. It can be seen
that the distance-dependent term has almost zero effect for segments
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