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The seismic response of structures depends on a large number of aleatory and epistemic uncertainties surround-
ing the estimation of the structural demand and capacity, both usually featuring considerable dispersion levels,
particularly when reinforced concrete structures are being assessed. When bridges are considered, the complex-
ity level increases, given thatmost of those behave irregularly in the transverse direction. Several proceduresmay
be used for the assessment of the seismic safety of bridges, namely the ones used to estimate the demand, inves-
tigated in a companion paper, ranging from linear or nonlinear static procedures tomore accurate ones, based on
nonlinear dynamic analysis. This workmakes use of the latter, commonly seen asmore accurate, to compute the
failure probability of existing bridges using a relatively simple framework. Different variables typically consid-
ered in a seismic assessment procedure (geometry, material properties, earthquake records, intensity level)
are statistically characterised, enabling a global simulation process, where each iteration step is associated to
an independent structural nonlinear dynamic analysis. Failure probability is then obtained through the probabi-
listic analysis of a safety indicator, defined as the difference between capacity and demand. An alternative uncer-
taintymodel, given by the convolution between the capacity and demand distributions, obtained independently,
is also applied. A case study of seven bridge configurations, with different (ir)regularity levels, is considered to-
gether with a relatively large set of real earthquake records. The simulation process is carried out using the Latin
Hypercube sampling algorithm, expected to considerably reduce the number of realisations with no reliability
loss. Conclusions have allowed the identification of vulnerable configurations and shown the importance of
the variable detail level when considering different uncertainty models.

© 2015 The Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

A typical seismic safety assessment procedure involves a set of rele-
vant components that need to be properly defined, until the seismic
safety itself is assessed. Such ultimate step may, similarly to all the
other components, feature different approaching scenarios. Those will
essentially consist in the comparison of the demand, coming from a
properly selected seismic ground motion input, with the capacity of
the structural elements, given by the geometry, material properties,
and nonlinear behaviour models, among others. The deterministic ap-
proaches are the ones that practitioners are most familiarised with, as
it certainly goes along with the traditional design practice or structural
safety verifications. However the research trend of the past decades
has been mostly addressing the employment of probabilistic ap-
proaches, which tend to gain weight, as rationally more consistent.
Still, the employment of probabilistic procedures for seismic assessment
by practitioners is far from being straightforward, which opens the floor

to the proposal of relatively simple methodologies that do not require
deep mathematical formulations but still provide accurate results.

According to Pinto [46] the probabilistic safety assessment of struc-
tures is usually simulation based, FORM-based (First Order Reliability
Methods) or response-surface based. Several different proposals for im-
plementation are available in literature within each category but the
subject of probabilistic seismic assessment is still under considerable
development and improvement. Such state-of-the-art is due to the
growing awareness of the international community of the need for in-
cluding probabilistic measures in seismic assessment practice. Howev-
er, the employment of probabilistic methods is still far from large
dissemination among the professional engineering community. Their
main practical application may be attributed to the calibration of deter-
ministic approaches used in codes, based on the use of partial safety fac-
tors. The reason that is mostly pointed out is the mathematical
complexity and computational onus, unlike the traditional design pro-
cedures, which offer clear-cut guidance, as stated by Pinto et al. [47].

A number of probabilisticmethods are becomingmore common and
have been systematically applied bymany researchers to the seismic as-
sessment of bridges in the past decades [e.g. 10,11,14,30,36,37,42,
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51–53]. Provided with a solid mathematical background, such methods
are not always easily approachable by practitioners and thus not
necessarily appealing to the community. Indeed, the popularity of prob-
abilistic methods has been many times restricted to the use as comple-
ment to code-based design, assessment of existing structures or design
of newones, requiring special care (critical facilities). A possible alterna-
tive to the employment of refined probabilistic methods could be the
consideration of relatively simplified approaches, yet theoretically
sound, which could start making their way into current design carried
out by practitioners. Even if simple, any probabilistic procedure requires
a substantial amount of statistical information, in comparison with the
deterministic ones, to characterise the uncertainty in the structural
safety problem. Such information includes the probabilistic characteri-
sation of seismic hazard as well as the capacity and structural demand.
The implementation of less complex approaches, mathematically ligh-
ter, yet probabilistically sound, can play an important role in introduc-
ing higher accuracy in current engineering seismic assessment practice.

In light of the above, this paper presents two different methodologies
for the seismic safety assessment of structures, applied to bridges, which
foresee the computation of the failure probability. This is achieved
through a relatively straightforwardprocess,which can beused in current
practice for seismic assessment purposes, without significant computa-
tional onus. In order to accomplish so, as well as to duly incorporate the
uncertainty associated to all the considered variables of the safety prob-
lem, both capacity and demand are statistically characterised by means
of assumed and/or adjusted distributions. Such statistical definition
makes use, when necessary, of random samples obtained with the Latin
Hypercube sampling (LHS) technique. On the one hand, the safety assess-
ment of a single structural system can be carried out through a safety in-
dicator statistically characterised by multiple aleatory deterministic
differences between the capacity and the demand (global uncertainty).
On the other hand, a failure probability obtained from the independent
statistical characterisation of the variables that are part of the process
(local uncertainty) could be considered. Therefore, the difference be-
tween the two proposed methodologies lies on the way of dealing with
theuncertainty of thedifferent variables,which yielddistinct failure prob-
abilities. Thedistinction is establishedbetween accounting for uncertainty
locally or globally, which depends on the number of considered variables
characterised statistically (higher for the latter) and on the approach for
the convolution between capacity and demand. Both uncertainty model-
ling approaches are tested for a case study of seven bridge configurations,
featuring different deck lengths and regularity levels. The same
approaches, herein validated, are then tested in a companion paper
addressing the relative accuracy of different nonlinear analyses (static
and dynamic) to estimate the seismic demand.

2. Safety assessment

2.1. Failure probability

The failure probability of a structural element, considering a single
failure mode, may be obtained according to Eq. (1), where X is a vector
containing the basic random variable x, in which the structural safety is
settled; g(X) is the limit state function associated to the failure mode
under consideration and fX(x) is the joint probability density function
of the vectorX, characterising theway the variables define the structural
safety problem. This is, according to Ferry-Borges and Castanheta [17], a
commonly employed procedure, corresponding to the simplest basic
problem of structural safety.

pf ¼
Z

g Xð Þ≤0

f X xð Þdx ð1Þ

The solution of Eq. (1) will involve multidimensional integration in
agreement with the number of variables in vector X (e.g. the physical

variables such as loading, material properties or geometrical data),
which incorporate the uncertainty associated to the regarded failure
mode. In a structural engineering context the safety problemwill essen-
tially depend on two continuous and independent assumed variables: R,
standing for a measure of resistance (capacity) and S, the structural re-
sponse (demand). In this case the limit state function is simply given by,
in other words, the difference between the capacity and the demand as
shown in Eq. (2).

g Xð Þ ¼ R−S ð2Þ

By taking the corresponding joint probability density function, fX(x)
and assuming that R and S are independent variables, the failure proba-
bility will be given by Eq. (3), where fS(s)ds is the probability of Swithin
the interval [s, s + ds] and FR(s) is the cumulative distribution function
of R i.e. the probability of R being less than the value of S corresponding
to s.

pf ¼ prob R−S ≤ 0ð Þ ¼ ∬ F f R;S r; sð Þdr ds
¼

Z þ∞

−∞
f S sð Þ �

Z S

−∞
f R rð Þdr ds ¼

Z þ∞

−∞
f S sð Þ � FR rð Þdr ds ð3Þ

Furthermore, as R and S are independent, the probability of both oc-
curring at the same time is given by the product of each of the probabil-
ities of occurring separately, i.e. fS(s) · FR(s)ds. The sum for all the values
of S yields the convolution integral in Eq. (3) [21]. It is thus necessary to
define the statistical distributions for the capacity (R) and demand (S).
As far as capacity is concerned, FR function in Eq. (3), numerical simula-
tion is used to characterise ultimate ductility in curvature (μ) which is in
turn expressed as a function of the material properties, concrete and
steel, which assume their own statistical distributions. The distribution
of μ is obtained using a simulation scheme, which can be pure Monte
Carlo or improved Latin Hypercube. On the other hand, the estimate
of the distribution of the demand (S) depends on a higher number of
analysis steps and variables. The input ground motion is well known
for its aleatory uncertainty hence several analyses need to be carried
out for a sufficient number of intensity and nonlinearity levels to
cover the record-to-record variability.

2.2. Seismic hazard — intensity level probability density function

The intensity level probability density function represents, at
each intensity measure level (e.g. peak ground or spectral accelera-
tion) the density of probability at each point in the sample space of
that random variable. The probability of the variable falling within a
specific set is given by the integral of its density over the set. To
characterise an event such as the occurrence of an earthquake,
highly unusual, it is common to use the extreme value theory, a
branch of statistics dealing with the extreme deviations from the
median of probability distributions. Within such theory, the gener-
alised extreme value distribution has been defined, combining
three types of distinct distribution families, also known as type I,
II and III extreme value distributions. In the earthquake engineering
context, if the seismic hazard would be defined by means of peak
ground acceleration, a maxima-related extreme value distribution
will be definitely suitable. On the other hand, if a resistance-side
variable should be the goal, a minima extreme value distribution
would, instead, be more suitable. The generalised extreme value
distribution is a flexible three-parameter model that combines the
aforementioned maximum extreme value distributions and types
I, II and III are often referred to as the Gumbel, Fréchet and Weibull
extreme value distribution families. Type I distribution, Gumbel re-
lated, has been early used in applications of extreme value theory to
engineering problems and, as related to the maxima, is the one fre-
quently chosen to characterise seismic hazard intensity. Its proba-
bility density function is given by Eq. (4), where μ ∈ ℜ is the
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