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The paper proposes a novel methodology to construct the individual local, distortional, and global buckling
modes of a thin-walled structural element under a given loading. The resulting buckling modes form an orthog-
onal basis of the deformation space, so that any randomdeformed shape can be expressed as a linear combination
of the basic buckling modes. The method is applicable to open branched or unbranched cross sections, as well as
cross sections containing closed parts. Examples are provided to illustrate the procedure.

© 2015 The Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled structures are used in many applications across a range
of engineering disciplines, including structural, aeronautical, nautical,
andmechanical engineering. They offermany advantages, most notably
an efficient use ofmaterial and, consequently, a high strength-to-weight
ratio. However, owing to their limited wall thickness, they are typically
susceptible to a number of bucklingmodes, and the study of their stabil-
ity offers an interesting and challenging field of study. Quite often, var-
ious buckling modes may interact with each other to produce a
detrimental effect on the load bearing capacity through mechanisms
which are often sensitive to initial geometric imperfections. In order
to study and understand these complex phenomena, it is useful to be
able to separate coupled instabilities into a number of ‘standard’ indi-
vidual modes of which the characteristics and behavior are relatively
well known. Traditionally, buckling modes in thin-walled structural el-
ements are classified into local, distortional, and global modes. Fig. 1 il-
lustrates some of these modes for the case of a lipped channel under
compression. Local, distortional, and global modes differ significantly
in terms of their behavior, particularly with respect to the post-
buckling capacity they display. The local modes typically have ample
post-buckling reserve capacity when buckling in the elastic range,
while distortional buckling is associated with significantly less post-
buckling capacity and the global modes possess virtually none. Identify-
ing and classifying buckling modes is therefore an important

component of assessing the behavior and capacity of thin-walled struc-
tural elements.

The general aims of this paper are (1) to propose a methodology
to construct the individual local, distortional, and global buckling
modes of any specific thin-walled element under a given loading,
and (2) to provide a means to identify the contributions of these
‘pure’ modes in a random deformed shape, which may be a coupled
instability. It is thereby noted that several tools for the stability anal-
ysis of thin-walled elements currently exist, the most commonly
used ones being the finite strip method (FSM) [10] and the more
general finite element method (FEM). Both are able to perform a
buckling analysis, however, they return the eigenvalues (load pa-
rameters) associated with modes which are often coupled instabil-
ities and not the ‘pure’ local, distortional, or global modes we wish
to obtain as the aim of this research.

It should also be noted that, as previously established (e.g., by [7,
12]), a complete description of all possible buckling modes also ne-
cessitates the introduction of shear modes and transverse extension
modes in addition to the traditional local, distortional, and global
modes.

Previous attempts at modal classification and decomposition have
mainly centered around Generalized Beam Theory (GBT), originally de-
veloped by Schardt [19]. GBT was first developed for unbranched open
sections and simple closed sections and later extended to include more
general sections [13] and even further developed for some curved
cross-sectional shapes [20]. GBT provides a way to arrive at the pure
‘deformationmodes’ byuncoupling thefirst-order equilibriumdifferen-
tial equations. It should also be noted that, as an extension of classical
beam theory, GBT is based on certain idealized assumptions. The
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success of GBT in achieving pure uncoupledmodes, however, has led to
the development of the constrained finite strip method (cFSM), where-
by the principles and themechanics of GBT are introduced into the FSM
in order to obtain a modal decomposition. Early work on the cFSMwas
carried out by Adany [1], followed by the presentation of a formal deri-
vation [5] and a companion paper with applications and examples [6].
At that stage, however, the method could only be applied to single-
branched, open cross sections. A study into shear modes in thin-
walled members [3] later paved theway to a generalized cFSM for arbi-
trary cross sections [8,9], with an alternative generalization developed
by Djafour et al. [11]. An extension of the cFSM to include general end
boundary conditions was also presented by Li and Schafer [14]. Adany
et al. [4] extended the range of application of the cFSM by using the
method to identify finite element generated buckling modes in thin-
walled members. Research with a similar purpose was carried out by
Nedelcu [16,17] and Nedelcu and Cucu [18], who used GBT to decom-
pose the elastic bucklingmodes obtained from shellfinite element anal-
ysis, with or without perforations.

2. Objectives

The general aims of the research are to develop a methodology

1. to create a set of pure buckling modes for a given thin-walled struc-
tural element under a given loading (e.g., compression or bending),
categorized into local, distortional, global, and ‘other’ modes (i.e.,
shear and transverse extension modes).

2. to decompose a randomdeformed shape into a linear combination of
the pure buckling modes.

In addition, the set of pure bucklingmodes should satisfy the follow-
ing criteria:

1. The full set of local, distortional, global, and other modes form an
orthogonal basis of the full deformation space. Orthogonality is
thereby expressed with respect to the elastic stiffness matrix K.
This is a logical choice since an elastic buckling analysis
(e.g., using the FSM) requires the solution of an eigenvalue prob-
lem of the form:

K−λGð Þ:v ¼ 0 ð1Þ

where K is the elastic stiffness matrix and G is the geometric stiffness
matrix (or stability matrix). The resulting eigenvectors v define the
buckled shapes, while the associated eigenvalues λ are proportional to
the elastic buckling stresses. It is easily proven that all eigenvectors v
are orthogonal to each other with respect to K, as well as with respect

to G. Indeed, let vi and vj be two eigenvectors associated with two dif-
ferent eigenvalues λi and λj, then

K−λiGð Þ:vi ¼ 0 ð2Þ

K−λ jG
� �

:v j ¼ 0 ð3Þ

Pre-multiplying Eq. (2) by vjT, pre-multiplying Eq. (3) by viT, and sub-
sequently transposing Eq. (3) leads to:

vTj : K−λiGð Þ:vi ¼ 0 ð4Þ

vTj : KT−λ jG
T

� �
:vi ¼ 0 ð5Þ

Subtracting Eq. (5) from Eq. (4) and using the symmetry of K and G
leads to:

λi−λ j
� �

vTj :G:vi ¼ 0 ð6Þ

Since λi and λj are assumed to be different eigenvalues, Eq. (6)
proves the orthogonality of the eigenvectors with respect to G,

vTi :G:v j ¼ 0 ∀i≠ j ð7Þ

and consequently, through Eq. (4) or Eq. (5), with respect to K.:

vTi :K:v j ¼ 0∀i≠ j ð8Þ

Orthogonality with respect to K has the physical meaning that the
work done by the stresses associated with vi in the strains associated
with vj is zero (and vice versa). This inspires us to define an inner prod-
uct over the space of possible deformations whereby the inner product
of two vectors v and w is given by:

bv wNj ¼ 1
2
vT :K:w ¼ 1

2
wT :K:v ð9Þ

Compared to Eq. (8), a factor of ½ has been added, so that the inner
product has the physical meaning of elastic strain energy.

Although the derivation of the proposed methodology does not rely
on it, it is worth noting that if the complete set of pure buckling modes
maintains orthogonality with respect to K, a property also encountered
in the solutions of the stability problem Eq. (1), then there necessarily
exists a rotation in 4 N-dimensional space (i.e., the space spanned by
all degrees of freedom: N is the number of nodes in the FSM model)
which rotates the output of Eq. (1) into the puremodes. This is true pro-
vided that all modes are normalized and that the correct orientation of
the vectors is chosen along their axes (+1 or −1; it is obvious that
this choice is completely arbitrary). Since the inner product, through
Eq. (4), is definedwith respect toK, the logical choicewithin the context
of this paper is to also normalize all eigenmodes with respect to K, so
that:

bvijviN ¼ 1
2
vTi :K:vi ¼ 1 ð10Þ

With the aim in mind of decomposing a random deformed shape
into its constituent pure modes, it is obviously necessary that the
buckling modes form a set of independent basis vectors of the defor-
mation space. Imposing orthogonality on top of this requirement has
the advantage that the decomposition of a random shape can be
achieved by simply projecting the shape onto the basis vectors
using the inner product.

2. The decompositionmethod presented by Adany and Schafer [7], the
cFSM, borrows from the principles of Generalized Beam Theory
(GBT) to distinguish between local, distortional, and global buckling.

a b c

Fig. 1. Buckling modes of a lipped channel: a. local, b. distortional, and c. global modes.

3J. Becque / Structures 4 (2015) 2–12



Download English Version:

https://daneshyari.com/en/article/307984

Download Persian Version:

https://daneshyari.com/article/307984

Daneshyari.com

https://daneshyari.com/en/article/307984
https://daneshyari.com/article/307984
https://daneshyari.com

