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A variationalmodel describing the behaviour of a thin-walled I-section strut suffering from local–global buckling
mode interaction is presented where global (Euler) buckling about the strong axis is the critical mode. A system
of differential and integral equations is derived that describe the equilibrium states from variational principles
and are solved numerically using the continuation and bifurcation software AUTO-07P for the perfect case. Initially
stress relieved out-of-straightness imperfections are subsequently introduced and the nonlinear response is
modelled. The modelled interaction is between the critical global buckling mode about the strong axis and
local buckling in the flange and web simultaneously, where the flange–web joint is assumed to be free to rotate
as a rigid body. The initial eigenmode is shown to be destabilized at a secondary bifurcation where interactive
buckling is triggered. A progressive change in the buckling mode is then observed, initially with local buckling
localizing at the mid-span of the compression flange, which also triggers sympathetic local buckling in the
web. The results from the analytical model have been validated using the commercial finite element (FE)
software ABAQUS with good comparisons presented for the initial post-buckling behaviour. The strut also exhibits
sensitivity to initial out-of-straightness imperfections, with a notable decrease in the ultimate load as the imper-
fection size increases. The ultimate loads for a range of imperfection amplitudes are found using both analytical
models and FE analysis, with very good correlation observed.

© 2015 The Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Open section, thin-walled columns and struts are well known to be
susceptible to buckling in a variety of different modes. Moreover,
where local and global instability modes have similar buckling loads,
the structure is known to be susceptible to exhibiting nonlinear modal
interactions [1]. The interactive post-buckling response of these struc-
tures can introduce significantly less stable behaviour than if either
mode were to be triggered independently, potentially reducing the
load carrying capacity considerably. Extensive numerical and experi-
mental studies have been previously conducted on thin-walled struts
and columns,with evidence of interaction between global, local and dis-
tortional modes of buckling [2,3,4,5,6]. Such systems have also been
shown previously to be sensitive to imperfections, which can further
decrease the load capacity [7,8,9]. However, since thin-walled struts
are highly mass-efficient, with large load capacity to self-weight ratios,
these components are used extensively in industry, particularly in the
civil, maritime and aeronautical engineering sectors [10]. It is therefore
essential that further understanding of the behaviour of these types of
structures is developed since they offer significant practical advantages

even though they can suffer from complex and potentially dangerous
instabilities that can be amplified by geometric imperfections.

The current work presents an analytical model of a thin-walled, lin-
ear elastic, doubly symmetric I-section strut of uniform thickness under
pure compression. In recent work [11], a similar structure was studied
where geometries dictated global buckling about the weak axis to be
the critical mode, which then triggered local buckling in both the flange
and the web, as is often observed in practice. The current study focuses
on the case where weak axis buckling is restrained with global buckling
about the strong axis becoming critical. This is often seen in applications
where the system is braced in order to increase the load carrying capac-
ity by reducing the buckling length in the weak axis. The strong axis is
often left unbraced and thus may become critical. Given the geometric
arrangement, this may naturally push the global and local modes of
buckling to be triggered at more similar loading levels. Moreover, with
the modern trend of using higher strength materials, in particular
steels [12,13], elastic behaviour has regained an increased practical
significance.

The model is formulated using variational principles in conjunction
with the Rayleigh–Ritz method using a series of displacement functions
and generalized coordinates resulting in a system of nonlinear ordinary
differential and integral equations. Initially, the perfect case model is
analysed and the equations are solved numerically in the continuation
and bifurcation software AUTO-07P [14]. A strut with identical material

Structures 4 (2015) 13–26

⁎ Corresponding author.
E-mail addresses: elizabeth.liu07@imperial.ac.uk (E.L. Liu), a.wadee@imperial.ac.uk

(M.A. Wadee).

http://dx.doi.org/10.1016/j.istruc.2015.08.007
2352-0124/© 2015 The Institution of Structural Engineers. Published by Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Structures

j ourna l homepage: ht tp : / /www.e lsev ie r .com/ locate /s t ructures

http://crossmark.crossref.org/dialog/?doi=10.1016/j.istruc.2015.08.007&domain=pdf
http://dx.doi.org/10.1016/j.istruc.2015.08.007
elizabeth.liu07@imperial.ac.uk
a.wadee@imperial.ac.uk
http://dx.doi.org/10.1016/j.istruc.2015.08.007
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/structures


and geometric properties is also analysed in the commercial finite ele-
ment (FE) software ABAQUS [15] for comparison and validation purposes.
The imperfect case model is then studied, where an initial out-of-
straightness is introduced in the major axis of the strut. The equations
are solved numerically in a similar manner and the ultimate loads are
compared to an FE model formulated using the same magnitude and
shape of the initial global buckling deflection.

For the perfect strut, it is found that with the selected geometries,
strong axis global buckling is triggered as the initial eigenmode,
resulting in a neutrally stable path that is subsequently destabilized at
a secondary bifurcation point where local buckling in the more com-
pressed flange is also triggered. Since the flange–web joints are
modelled as being free to rotate as a rigid body, sympathetic local buck-
ling is also triggered in the web, a response that is known from recent
work on stiffened plates [8]. A nonlinear, interactive post-buckling
path is observed in the current study; behaviour that has also been
found in other thin-walled components [4,16,17]. The analytical
model shows a good comparison with the FE model, particularly close
to the point of secondary instability. The imperfect strut response is ob-
served to have a similar post-buckling path to the perfect case; howev-
er, it is found to be sensitive to initial out-of-straightness imperfections
with a decreasing observed ultimate load as initial deflections increase.
It is also found that the ultimate load becomes less sensitive to initial
global imperfections as they increase in magnitude. Similar trends and
behaviours exhibited in the analytical model have also been observed
in experimental studies [5,16,17], indicating that the fundamental phys-
ics of the system has been successfully captured using the analytical
approach.

2. Analytical model

The elevation and cross-section of the strut under consideration are
shown in Fig. 1.

The strut is assumed to be restrained from buckling globally about
the weak axis, which is commonly seen in practice where restraints or
bracing members are utilized to constrain the buckling length thereby
preventing global instability in that direction. In such cases, given suffi-
cient bracing, when instability occurs, it is therefore the relatively
unbraced strong axis global mode that is triggered.

The analytical model formulation begins by defining the functions
used to describe the global and local buckling shapes. The global mode
can be decomposed into two components, which are defined as
the ‘sway’ and ‘tilt’ components, as used successfully in previous work
[18,19]. The two components are shown in Fig. 2, the combination of
which allows the development of shear strains within the cross-
section, which is a feature of Timoshenko beam theory and has been
shown to be a key element for capturing mode interaction successfully
in analytical studies [20]. In previous work related to the buckling of I-
sections, it has been assumed that the web is rigid and therefore did

not deform locally during the post-buckling process [17,21]. However,
when the strut buckles globally about the strong axis, inclusion of
local web buckling is of paramount importance for modelling interac-
tive behaviour in the system since it provides the only significant source
of the terms in the governing equations that exhibit an explicit interac-
tion between the local and global instability modes. Moreover, if the
strut is assumed to be ‘thin-walled’, there would be no significant
through-thickness shear strains developed within the flanges.

The sway and tilt kinematic components shown are defined as W
and θ respectively:

W zð Þ ¼ qsL sin
πz
L

� �
; θ zð Þ ¼ qtπ cos

πz
L

� �
; ð1Þ

where qs and qt are the respective generalized coordinates for the sway
and tilt modes. In addition to the global sway and tilt modes, the initial
stress relieved out-of-straightness imperfections, also shown in Fig. 2,
are introduced; the corresponding functionsW0 and θ0 are written as:

W0 zð Þ ¼ qs0L sin
πz
L

� �
; θ0 zð Þ ¼ qt0π cos

πz
L

� �
; ð2Þ

where qs0 and qt0 are the amplitudes of the global out-of-straightness
imperfections.

There are four local buckling displacement components to be
defined, the in-plane displacements ufl and uwl of the flange andweb re-
spectively, as well as the out-of-plane displacements wfl and wwl, again
of the flange andweb respectively. The local transverse deflection in the
x-direction v is assumed to be small and is thus neglected [22]. Fig. 3
shows the local buckling mode deflections, which are defined as:

ufl x; zð Þ ¼ uf zð Þ; uwl y; zð Þ ¼ −
y
h

� �
uw zð Þ; ð3Þ

wfl x; zð Þ ¼ f xð Þwf zð Þ; wwl y; zð Þ ¼ g yð Þww zð Þ; ð4Þ

for the in-plane flange and web deflections and the out-of-plane flange
and web deflections respectively. As previously mentioned, Timoshen-
ko beam theory is being used throughout the current formulation,
thus for the in-plane modes, a linear function in y and a constant in x
for the web and flange respectively are selected, such that they fulfil
the constraint that plane sections remain plane while bending. Func-
tions f(x) and g(y) define the deflected shapes of the flange in the x-
axis and of the web in the y-axis respectively. The functions f(x) and
g(y) are selected such that they satisfy the boundary conditions for
each separate element while also giving a good representation of the
deflected shape of the element.

In the current work, where strong axis global buckling is the critical
mode, the flange under most compression can be modelled as being
subject approximately to a uniform compression across its entire
breadth, particularly before and immediately after global buckling is

Fig. 1. An I-section strut under axial loading P, elevation (left) and cross-section (right). The ends are simply supported and a rigid end plate transfers the load equally to the flanges.
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