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a  b  s  t  r  a  c  t

Thermal  energy  storage  (TES)  and  batteries  have  recently  become  increasingly  important  for  peak-load
shifting  in  energy  systems.  However,  optimizing  energy  systems  is  difficult  because  each  machine  has
multiple  combinations  of  operations,  and  the  objective  function  contains  transformed  nonlinear  or  non-
convex  characteristics.  Therefore,  we  adopted  the  epsilon-constrained  differential  evolution  (εDE)  in
order  to minimize  operating  costs.  We  demonstrate  that the εDE  method  efficiently  solved  strict  con-
straint  optimization  problems  on  three  energy  systems:  a self-consumption  model  (Case  1),  total  amount
of a purchased  model  (Case  2),  and  a full connection  model  (Case  3) under  126  case  studies.  Although  216
decision  variables  were  used  under  the  nonlinear  condition,  we were  able  to obtain  the  optimal  solution
within  a short  time  period,  16  min  on an  ordinary  PC. Moreover,  we  proposed  a  new  index  “Area  rate  of
prices  (ARP)”  in  order to evaluate  the  effects  of  purchased  and  sold  electricity  prices  on the operating
costs.  The  results  showed  that when  the  area  rates  of  purchased  price  to sold  price  are  higher  than  0.2
(ARP  > 0.2),  Case  1  was  superior  to Case  2. On  the  other  hand,  when  the ARP  value was  less  than  0.2,  Case
2  was  superior  to  Case  1. Therefore,  we  can  conduct  the optimization  on  everyday  practical  situations
because  εDE  requires  low  computational  cost.  Even  if the  operators  cannot  conduct  the  optimization  in
practical  energy  management,  they  can easily  determine  the  operation  strategy  by  calculation  of the  ARP
value.  Therefore,  the  εDE and  ARP  methods  have substantial  advantages  for energy  system  optimization.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In recent years, the installation of renewable power generators,
such as photovoltaic (PV) systems, has increased. As a result, busi-
ness models for the sale of electricity generated from PVs have
spread globally. In addition, batteries have been gradually installed
not only to manage the grid’s voltage and frequency, but also to
minimize operational costs (Toshiba Corporation, 2012; Panasonic,
2015). This is especially true under the dynamic pricing model, in
which the price of electricity depends on the estimated electricity
consumption. Moreover, thermal energy storage (TES) is a further
important system for both individual buildings and districts, as it
can minimize operational costs and contribute to business conti-
nuity planning (BCP).

However, the optimization of operating schedules is difficult
because a substantial number of decision variables and combi-
nations need to be addressed in order to determine an optimal
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solution. Much research has been devoted to determining these
optimal operating schedules. For example, mixed-integer linear
programming (MILP) was applied in order to optimize the oper-
ating schedules of HVAC systems that include ice-storage systems
(Vetterli & Benz, 2012). Further examples are Buoro, Pinamonti,
and Reini (2014), Dai and Mesbahi (2013), and Ikegami, Kataoka,
Iwafune, and Ogimoto (2012) who  used MILP in order to optimize
the operation schedule of energy systems. Although MILP is an
efficient and powerful method for solving large-scale issues by sim-
plification and linearization, it is not always suitable. The reason is
that many practical machines, such as heat source equipment and
pumps, have nonlinear characteristics.

Alternatively, Facci, Andreassi, and Ubertini (2014) utilized a
dynamic programming method (DP) to optimize the operating
schedule of nonlinear energy systems. This method has been used
in a number of studies. For example, De and Musgrove (1988) used
DP in order to solve a complex issue that included a PV, wind tur-
bine, and battery system. In particular, the wind energy converter
was considered as nonlinear modeling. Keefe and Markel (2006)
considered a plug-in hybrid electric vehicle (PHEV) energy man-
agement system. In addition, Chen, Wang, and Chen (2005) utilized
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DP to optimize the operation of an energy system that included ice-
storage equipment. DP can derive the theoretical optimal solution
under the discrete condition. Thus, it can be said that this method
is powerful for solving nonlinear models.

However, its computation time is very long, when many deci-
sion variables are included. We  have previously pointed out the
weakness of DP and proposed new metaheuristic optimization
methods (Ikeda & Ooka, 2015). We  determined that these meth-
ods had the ability to efficiently search the minimum solution by
comparing six methods, including DP. Lee, Chen, and Wu (2009)
proposed particle swarm optimization (PSO) as a means to optimize
the operation of HVAC systems that include ice storage. Bahmani-
Firouzi and Azizipanah-Abarghooee (2014) adopted a bat algorithm
(BA) in order to optimize battery electric dispatch. Yang and Wang
(2012) utilized multi-objective PSO in order to optimize energy
consumption and occupants’ comfort simultaneously. PSO and BA
are considered to be metaheuristics that are able to solve many
types of functions, such as nonlinear, discrete, and concave. How-
ever, their research did not simultaneously optimize electric and
HVAC systems, nor did it consider electricity generated by PVs and
batteries that is sold to the grid. In addition, we  need to adopt
an efficient optimization method that is able to handle a num-
ber of constraints in energy systems. Therefore, we conducted an
integrated optimization that includes PVs, batteries, TES, and heat
source machines using an epsilon-constrained differential evolu-
tion (εDE) developed by Takahama and Sakai (2010). This method
has been found to efficiently solve constraint optimization prob-
lems (Mallipeddi, Jeyadevi, Suganthan, & Baskar, 2012). Moreover,
it is important to evaluate the effect of the relationship between
the prices of the purchased and the sold electricity, as well as the
effect of energy system connections. This is because it is not easy
to determine the optimal operating schedule where prices change
hour to hour, the so-called dynamic pricing model. There is recent
research that handles the dynamic pricing model as a condition
of energy system optimization. Dufo-López (2015) considered a
dynamic pricing model to optimize the operating schedule of a
simple energy system for one year. Murphy, O’Mahony, and Upton
(2015) compared various operating strategies of an energy system
that includes ice-storage under the dynamic pricing model. Their
research showed the effect of various dynamic pricing models for
optimal operation.

However, it is not enough to merely evaluate the difference
in the dynamic pricing models. The difference between the pur-
chase and sale prices needs to be taken into account. Therefore,
we conducted a great deal of optimization of the energy system
under the various prices in order to address the results quanti-
tatively. Thus, we applied εDE to three energy systems that had
different connections of PVs, batteries and HVAC systems, and
126 cases with varying electricity purchase and sale prices were
investigated.

This paper is organized into five sections. Section 2 presents
the calculation conditions such as modeling energy systems, load
profiles, the price of electricity, and problem formulation. In Section
3, the algorithm of the proposed optimization method is presented.
In Section 4, results of the three cases are shown under a fixed price
condition of purchased and sold electricity. In Section 5, we verified
the relation between the prices of purchased and sold electricity
under three different demand curves and prices.

2. Materials

2.1. Modeling energy systems

In this study, we considered an electric system and HVAC
system. The electric system is consisted of the electric grid, PV,
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Fig. 1. The characteristics of AHP.

battery, and electricity demand (De). The area of the PV panels
and the module conversion rate are fixed at 500 m2 and 13% (PV
EDUCATION.ORG, 2015), respectively. The conversion rate of the
power conditioner is 0.97 (Mitsubishi Electric, 2015). The capacity
and maximum amount of electric charge to or discharge from the
battery is set to 500 kW h and 100 kW,  respectively. The charging
and discharging efficiency is set to 0.9, so one cycle efficiency is 81%
(Ikeda & Ooka, 2015).

The HVAC system is consisted of air-source heat pump (AHP),
TES, and cooling demand (Dc). The battery and grid supply elec-
tricity to equipment in HVAC system. The power output of the
AHP is dependent on the outdoor temperature, with a maximum
of 1000 kW.  The inlet/outlet water temperatures of AHP were set
to 12 ◦C and 7 ◦C. On the other hand, the amount of chilled water
changed in order to consider the operation at partial load rate. The
AHP has nonlinear relationships between the power output and
electricity consumption as shown in Fig. 1. When the AHP gener-
ates a cooling load at approximately 40–50% of the operating ratio,
its efficiency is the highest. Thus, it is not always true that the rated
operation is the best solution.

The TES was water thermal storage with a capacity of 3000 kW h.
Its storage and release efficiency was set to 1.0. Further, the self-
loss rate was fixed at 5% per day (0.2% per hour) and respective inlet
and outlet water temperature were fixed at 12 ◦C and 7 ◦C. The AHP
and TES pump can vary the amount of chilled water according to
the power output of the AHP and the amount of storing and release
thermal energy in the TES. Further characteristics of AHP and these
pumps can be found in Ikeda and Ooka (2015) and the LCEM tool
provided by The Ministry of Land Infrastructure, Transport and
Tourism (2014).

We  established three energy systems connections to be used
as case studies, as illustrated in Fig. 2.where, XtoY indicates the
electricity or cooling heat flow from X to Y. In Case 1, PV power
generation and battery electrical discharge are provided to the
electric demand. The shortage in the provided electricity is com-
pensated by the electric grid. Case 1 indicates a self-consumption
model. In Case 2, electricity from these sources is sold to the grid.
This process is called the full-amount purchase model because all
electricity for electric demand is purchased from the grid, and all
electricity generated from PVs and batteries is sold to the grid.
In Case 3, we established full connectivity as follows: (1) PV-
generated power is distributed to the electric demand, grid, battery,
and air-source heat pump (AHP). (2) Electricity discharged from
the battery is also distributed to the electric demand, grid, and
AHP.

2.2. Load profiles and the price of purchased and sold electricity

We  considered an office building in Tokyo with a total floor area
of 16,531.1 m2. The load and electricity demand are determined
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