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a b s t r a c t

This paper presents a first-order Generalised Beam Theory (GBT) formulation for naturally curved thin-
walled members with deformable cross-section, whose undeformed axis is a circular arc with no pre-
twist. First, the strain-displacement relations for naturally curved thin-walled members are derived and
it is shown how the classic GBT assumptions concerning the strains can be incorporated, namely:
(i) Kirchhoff's thin-plate assumption, (ii) Vlasov's null membrane shear strain assumption and (iii) the
null membrane transverse extension assumption. The equilibrium equations are obtained in terms of
GBT modal matrices and stress resultants. It is demonstrated that, for the so-called “rigid-body” de-
formation modes (extension, bending and torsion), the GBT equations coincide with those of the Winkler
(in-plane case) and Vlasov (out-of-plane case) theories. A standard displacement-based GBT finite ele-
ment is used to solve a set of representative illustrative examples involving complex local-global de-
formation. It is shown that the proposed GBT formulation leads to extremely accurate results with a
reduced number of DOF and that the GBT modal solution provides an in-depth insight into the structural
behaviour of naturally curved members.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The development of beam theories for naturally curved bars
has deserved a significant amount of attention in the past, due to
their relevance in many fields of engineering practice — see [1,2],
where historical details concerning the early contributions and the
classical theories can be found. Developments in this field are still
being proposed on a regular basis, even for the geometrically
linear case, focusing on finite element technology aspects such
as lack of invariance, locking effects and isogeometric approaches
[3–7].

This paper presents a first-order (geometrically linear) theory
for naturally curved elastic thin-walled bars that extends the
classic approaches by introducing arbitrary cross-section in-plane
and out-of-plane (warping) deformation. As a first step towards
the development of a more general theory for naturally curved and
twisted thin-walled bars, it is assumed in this paper that the initial
bending curvature is constant (i.e., the beam axis is a circular arc)
and that no pre-twist exists. The proposed theory constitutes an
important extension of the so-called classic Generalised Beam
Theory (GBT) for prismatic bars, which was introduced and

initially developed by Schardt and co-workers [8,9] (see www.gbt.
info for a list of publications by this group), following the pio-
neering work of Vlasov [10], and has been widely established as a
very efficient, versatile, accurate and insightful mean to assess the
structural behaviour of thin-walled bars — see [11–13] and the
complete list of publications by the Lisbon-based research group,
which can be found at www.civil.ist.utl.pt/gbt.

In the GBT approach, the cross-section kinematic description is
based on the superposition of structurally meaningful “cross-sec-
tion deformation modes”, whose amplitudes along the member
axis constitute the problem unknowns. According to specific cri-
teria, these deformation modes are subdivided into several subsets
(e.g., modes involving rigid-body motions, modes free of mem-
brane shear strains, etc. [14–16]) and are ordered within each
subset, so that the first ones are generally the most important to
characterize the member structural behaviour. These features
make it possible to obtain accurate solutions with only a few de-
formation modes and even derive semi-analytical or analytical
formulae in complex problems. Even in cases where one must
resort to fully numerical solutions, using e.g. GBT-based finite
elements, the DOF numbers necessary to obtain accurate results
are generally much lower than those required by shell finite ele-
ment analyses. In addition, the modal decomposition of the GBT
solution provides in-depth insight into the mechanics of the
problems.
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The outline of the paper is as follows. Section 2 presents the
fundamental equations of the proposed GBT formulation for
naturally curved beams. In particular, Section 2.1 is devoted to
obtaining the strain-displacement relations, assuming small-
strains and thin walls (Kirchhoff's thin plate assumption is deemed
valid). Next, in Section 2.2, the equilibrium equations are derived
and written in terms of modal matrices (the classic GBT formal-
ism) and also in terms of stress resultants. Section 2.3 addresses
the classic GBT kinematic assumptions, namely null membrane
transverse extensions and null membrane shear strains — the so-
called Vlasov's assumption, generally acceptable for slender beams
with open sections. These two kinematic assumptions are essen-
tial for the efficiency of the numerical implementation of the
formulation, as they effectively reduce the dimension of the space
of admissible deformation modes (i.e., they reduce the number of
cross-section DOFs) without significant loss of accuracy and also
eliminate shear locking problems (in the case of Vlasov's as-
sumption). Finally, Section 2.4 discusses the particular case of the
so-called “rigid-body” modes — axial extension, bending and tor-
sion — and compares the resulting equations with those of the
classic theories of (i) Winkler [17], for the in-plane case with
coupled axial force and moment, and (ii) Vlasov, for the out-of-
plane case with torsion-bending coupling and including warping.

The calculation of the cross-section deformation modes for
curved members is discussed in Section 3 and it is shown that the
use of Vlasov's assumption introduces a dependence between the
in-plane shapes of the modes and the cross-section orientation.
Next, in Section 4, details of the finite element implementation of
the proposed GBT formulation are provided. A set of re-
presentative numerical examples, involving complex local-global
deformation phenomena, is presented in Section 5. The paper
closes in Section 6, with the concluding remarks.

One final word concerning the notation, which follows closely
that introduced in [14], together the vector/matrix forms em-
ployed in [18,19]. In this framework, the subscript commas in-
dicate derivatives (e.g., = ∂ ∂f f x/x, ), even if in this paper the prime
identifies the derivative with respect to the beam axis arc-length
X, i.e. (·)′ = ∂(·) ∂X/ . Finally, it is noted that superscripts (·)M and (·)B

designate plate-like membrane and bending terms, respectively.

2. First-order GBT formulation for naturally curved members
with circular axis

2.1. Strain-displacement relations in wall local axes

Consider the naturally curved thin-walled member shown in

Fig. 1 and the associated global cylindrical coordinate system
(θ Z R, , ), with base vectors ( θe e e, ,Z R). The member axis arc-length
coordinate X is also introduced, which lies on the =Z ZC horizontal
plane and has constant curvature equal to R1/ C , where C is an
arbitrary cross-section “centre” (the intersection of the member
axis with each cross-section). In the global cylindrical coordinate
system, the displacement field is expressed as

= + +θ θU e e eu u uZ Z R R and the small strain-displacement relations
are given by (see, e.g., [20])
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Following the usual GBT approach, local axes (x y z, , ) are set in
each wall, as shown in Fig. 1, where y and z define the wall mid-
line and through-thickness directions, respectively, and x is con-
centric to X. Using the local base vectors (e e e, ,x y z), the displace-
ments of the wall are written as

( ) = + + ( )U e e ex y z u v w, , , 7x y z

where the local displacement components (u v w, , ) are related to
the cylindrical ones through

= ( )θu u, 8

φ φ= + ( )u v wsin cos , 9R

φ φ= − ( )u v wcos sin . 10Z

A coordinate transformation to the local axes is performed, using
the rotation angle φ (see Fig. 1) and the relations

φ φ= + + ( )R R y zsin cos , 110

Fig. 1. Global and wall (local) axes for a naturally curved thin-walled beam.
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