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a b s t r a c t

In this paper a novel shell finite element is introduced, specifically proposed for constrained shell finite
element analysis. The proposed element is derived from the finite strips used in the semi-analytical finite
strip method. The new finite element shares the most fundamental feature of the finite strips, namely:
transverse and longitudinal directions are distinguished. Moreover, the new element keeps the trans-
verse interpolation functions of finite strips, however, the longitudinal interpolation functions are
changed from trigonometric functions (or function series) to classic polynomials. It is found that the
proper selection of the polynomial longitudinal interpolation functions makes it possible to perform
modal decomposition similarly as in the constrained finite strip method (cFSM). This requires an unusual
combination of otherwise well-known shape functions. If the so-constructed shell finite elements are
used to model a thin-walled member, (hence, with using discretization in both the transverse and the
longitudinal directions,) modal decomposition can be done essentially identically as in cFSM, whilst the
practical applicability of the method is significantly extended (e.g., various restraints, holes, certain cross-
section changes can easily be handled). In this paper the focus is on the derivation of the novel shell finite
element. Constraining capability is illustrated by some basic examples. Practical application of the novel
element will be presented in subsequent papers.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The finite strip method (FSM) can be regarded as a special
version of finite element method (FEM) in which special “finite
element”-s are used. The most essential feature of FSM is that
there are two pre-defined directions, and the base functions (or:
interpolation functions) are different in the two directions. (Ty-
pically, though not necessarily and not always, the two char-
acteristic directions are perpendicular to each other). In classical
(sometimes also referred as to semi-analytical) FSM, as in [1–4] the
structural member to be analyzed is discretized only in one di-
rection (say: transverse direction), while in the other direction
(say: longitudinal direction) there is no discretization, i.e., in this
direction there is only one element along the member. This is why
the dimensions of this “finite element” are typically distinctly
different in the two directions, and that is why such an element is
called “finite strip” rather than “finite element”.

This special finite strip discretization has various consequences.
An advantageous consequence is that the total number of ele-
ments, therefore the total number of degrees of freedom is much
smaller than in case of a classic FEM, which means faster

calculation, as well as simpler pre- and post-processing. The price
of the calculation efficiency is restricted generality: the analyzed
member must be highly regular (e.g., typically it must be straight,
prismatic, etc.). A major restriction of the classical semi-analytical
FSM is that a certain longitudinal shape function can properly be
applied for only a certain problemwith given boundary conditions,
since in the lack of longitudinal discretization accurate solution
can be expected only if the longitudinal interpolation function well
represent the real behavior (i.e., if the applied shape function sa-
tisfies the differential equation and boundary conditions of the
problem).This restriction can (partially) be released if either tri-
gonometric series or splines are used for the longitudinal inter-
polation. In either case the problem size is significantly increased
(compared to FSM), while practical applicability is still limited
(compared to FEM).

The original idea of constraining a shell-model is proposed in
[5,6] then in [7–10]. The idea is to define special constraints, based
on some pre-defined mechanical criteria, the introduction of
which enables modal decomposition. Modal decomposition
transforms the original displacement field into a set of modal
displacements that can solve two basic problems: calculation in a
reduced but practically meaningful space (e.g., calculating global
buckling directly, by using only a few degrees of freedom), and
modal identification (e.g., assigning participation percentages from
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the modal deformations to a general deformation field).
The constrained finite strip method (cFSM) was first proposed

and developed for the semi-analytical FSM with sine-cosine
longitudinal shape functions that correspond to locally and glob-
ally pinned-pinned end restraints of the thin-walled beam or
column. Later other end conditions have also been considered
[11,12], but still within the semi-analytical FSM. The method was
then generalized to be able to handle general cross-sections
[13,14], which also required a more systematic definition of the
deformation modes [15]. An attempt to constraining a spline FSM
is presented in Ref. [16]. In Refs. [17,18] the constraining technique
is applied to shell FEM in the context of a commercial finite ele-
ment code.

Though all these above-mentioned constrained methods share
the same basic mechanical background, there are distinct differ-
ences. The advantageous features of cFSM are as follows: (a) the
method provides a full modal decomposition (i.e., the whole dis-
placement filed is transformed into a modal system), (b) the me-
chanical criteria of the modes are exactly satisfied, and (c) adding
constraints reduces the DOF number of the problem. However,
since cFSM is based on FSM, it has all the restrictions of FSM: for
example the member has to be regular, or, FSM is efficient only if
the longitudinal shape function is defined specific to the end re-
straints, which means that arbitrary boundary conditions cannot
be handled in an efficient way. The so-far proposed constrained
FEM has potentially more general applicability than cFSM, but
(a) it provides only partial modal decomposition (that is why
modal identification is not readily be handled), (b) the mechanical
criteria are satisfied only approximately, and (c) adding constraints
increases the DOF number of the problem.

It can be concluded that all of the existing constrained methods
possess limitations and/or disadvantages. A better constrained
method should provide full decomposition, should satisfy the
mechanical criteria exactly, should be generally applicable as
much as possible (as far as loading, boundary conditions, etc. are
concerned). In this paper the first step toward such a method is
presented. A novel shell finite element is introduced. The appli-
cation of the novel shell element leads to a method which shares
(most of) the advantageous features of the original cFSM, while
providing significantly extended general practical applicability.
The proposed element has a major geometrical limitation of being
rectangular and that its local coordinate system must match the
longitudinal and transverse direction of the member. Otherwise,
no further restrictions are included, that is, the proposed element
can be used similarly to any other shell finite elements.

By using the proposed novel shell element various problems
can readily be handled: various end and intermediate restraints,
nearly arbitrary loading, arbitrary buckling modes including shear
buckling or web crippling, certain cross-section changes along the

member length, holes. Some of these problems can be solved by
other methods, some not. For example, various loading and re-
straints can be handled by the generalized beam theory (GBT)
together with modal decomposition, see e.g. [19–22]. Though at-
tempts to extend GBT for sections with holes are recently reported
[23,24], it is still believed that the cFEM based on the here pro-
posed finite element is powerful, since it integrates the advanta-
geous features of all the available modal decomposition methods,
and it is based on the shell finite element method which is widely
used in research and even in design practice.

In this paper the derivation of the novel shell finite element is
presented in detail. Then the constraining capability of the ele-
ment is illustrated by some basic semi-analytical examples. The
examples justify the applicability. The details of the constrained
finite element method (cFEM) will be presented in subsequent
papers together with various examples to illustrate the advanta-
geous features of the new method.

2. Derivation of the proposed finite element

2.1. Short overview on existing semi-analytical FSM and cFSM

In finite strip method a member is discretized into longitudinal
strips, instead of finite element method, which applies dis-
cretization in both the longitudinal and transverse directions. In
Fig. 1a single strip is shown, along with the typically used local
coordinate system and the degrees of freedom (DOF) for the strip,
the dimensions of the strip, and the applied end tractions.

By using the simplest longitudinal trigonometric functions, the
displacements are approximated as follows.
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The above formulae represent pinned-pinned boundary con-
ditions. Two important features of the longitudinal shape func-
tions are that the same longitudinal function is used for u and w,
and the longitudinal function for v is the derivative of that used for

Fig. 1. Coordinates and DOF in finite strip method.
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