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a b s t r a c t

The free vibration and instability characteristics of nanoshells made of functionally graded materials
(FGMs) with internal fluid flow in thermal environment are studied in this paper based upon the first-
order shear deformation shell theory. In order to capture the size effects, Mindlin's strain gradient theory
(SGT) is utilized. The mechanical and thermal properties of FG nanoshell are determined by the power-
law relation of volume fractions. The Knudsen number is considered to analyze the slip boundary con-
ditions between the flow and wall of nanoshell, and the average velocity correction parameter is used to
obtain the modified flow velocity of nano-flow. The governing partial differential equations of motion
and associated boundary conditions are derived by Hamilton's principle. An analytical solution method is
also employed to solve the governing equations under the simply-supported end conditions. Then, some
numerical examples are presented to investigate the effects of fluid velocity, longitudinal and cir-
cumferential mode numbers, length scale parameters, material properties, temperature difference and
compressive axial loads on the natural frequencies, critical flow velocities and instability of system.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Shells among the fundamental engineering structures have
many industrial applications. Numerous investigations are carried
out to study different aspects of behavior of shell-type structures,
including free vibration [1], forced vibration [2], static and dy-
namic buckling [3], post-buckling [4], thermal buckling [5] and
biomechanical properties [6]. Cylindrical, spherical and conical
shells can be used to model pipes, reservoirs, tanks and many
other conveying fluid structures. Works of Païdoussis and Denise
[7], Weaver and Unny [8] and Matsuzaki and Fung [9] are the first
outstanding studies in this field. Amabili and co-worker [10]
analysed the free vibration characteristics of circular cylindrical
thin shells. Vibration of anisotropic cylindrical shells with internal
and external flowing fluid [11], partially or completely filled with
liquid for axisymmetric and beam-like anisotropic cylindrical
shells [12] are investigated by Lakis et al. Zhou studied the vi-
bration and stability of conveying fluid ring-stiffened thin-walled
cylindrical shells by applying Flugge shell theory [13].

Functionally graded materials are considered as a special case

of composites in which the material properties are varies over the
volume. Employing the ceramic and metal layers at two sides of
FGM, leads to use the best mechanical properties of both materials
and makes it a suitable candidate of many applications [14–18].
Huang and Han presented the buckling and post-buckling analysis
of the FG cylindrical shells [19]. Effects of the thermal and me-
chanical loads on the post-buckling responses of a functionally
graded plate are perused by Wu et al. [20]. Sheng and Wang dis-
cussed the nonlinear vibration responses of an FG cylindrical shell
subjected to thermal and axial loads [21]. They considered the Von
Kármán nonlinearities and used the multiple scales method to
solve the equations analytically. They also analysed the vibration
of conveying fluid FG cylindrical shells in thermal environment
and embedded in an elastic medium [22].

It is well known that the classical theory of continuum me-
chanic cannot consider the small-scale size effects. In this regard,
non-classical continuum mechanic theories are developed to
capture the size effects. Among these theories, the nonlocal elas-
ticity theory [23], Mindlin's strain gradient theory [24], couple
stress theory [25], strain gradient theory [26], modified couple
stress theory [27] and modified strain gradient theory [28] are the
most popular and strong ones. Later, various researchers devel-
oped the nonclassical small-scale beam, plate and shell models
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incorporating the size effects to estimate the size-dependent static
and dynamic mechanical characteristics of structures at nano- and
micro-scales [29–42]. For instance, Ghorbanpour et al. [43] studied
the nonlinear vibration and instability of conveying fluid double-
walled boron nitride nanotubes (DWBNNTs) based on nonlocal
shell theory. Zhou and Wang [44] used the modified couple stress
theory to present the vibration characteristics of a conveying fluid
micro-scale cylindrical shell with simply-supported end condi-
tions. Ansari et al. [45] obtained the nonlinear vibration responses
of single-walled boron nitride nanotubes (SWBNNTs) with internal
flowing fluid based on modified strain gradient theory. Using the
method of multiple time scales, Kural and Ozkaya [46] analytically
investigated the size-dependent vibrations of a microbeam con-
veying fluid embedded on an elastic foundation based on the
modified couple stress theory and Euler-Bernoulli beam model.

The above literature review shows that there are few papers
which analysed the size-dependent behavior of conveying fluid
micro/nano shell-structures with non-classical elasticity theories.
So this work is assigned to present the free vibration and in-
stability characteristics of conveying fluid FG nanoshell by em-
ploying Mindlin’s strain gradient theory. To this aim, the proper-
ties of functionally graded material and flowing fluid model are
introduced first. Then, the governing equations and related
boundary conditions are obtained by applying Hamilton’s princi-
ple. The Navier-type exact solution is used to solve the governing
equations for both end simply-supported nanoshell. The effects of
different parameters on the natural frequencies of conveying fluid
FG nanoshell are examined in the case studies. Also, in order to
validate this study, the results of special cases of present approach
are compared with some works in the field.

2. Material properties of FG nanoshell

Fig. 1 shows a schematic view of a fluid-conveying circular
cylindrical nanoshell with geometrical properties as uniform
thickness h, midsurface radius R, and length L. A curvilinear co-
ordinate system is chosen for the nanoshell. The origin of co-
ordinate is located in the middle surface and the axial, cir-
cumferential and radial directions of a typical point are denoted by
x, y and z, respectively. The nanoshell is made of functionally
graded materials in which the inner surface of nanoshell
( = − )z h/2 is fully ceramic and the outer surface ( = )z h/2 is metal
rich and consequently the material properties are vary con-
tinuously in thickness direction. Moreover, it is assumed that the
variation of mechanical properties of FG nanoshell is based on the
power-law distribution of the volume fractions. In this regard, the
Young’s modulusE , Poisson's ratio ϑ, mass density ρ and thermal
expansion α are as follows through the FG nanoshell thickness

( )( )= − ( )+ ( )E z E E V z E 1am c f c

( )ϑ( )= ϑ −ϑ ( )+ϑ ( )z V z 1bm c f c

ρ ρ ρ ρ( )=( − ) ( )+ ( )z V z 1cm c f c

α α α α( )=( − ) ( )+ ( )z V z 1dm c f c

where the subscripts m and c stands for the metallic and ceramic
constituents respectively, and the volume fraction Vf is defined as
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in which κ signals the power-law index.

3. Governing equations of motion

With using the first-order shear deformation shell theory
(FSDT), the dynamic displacement field for the circular cylindrical
nanoshell shown in Fig. 1 can be written as

ψ ψ= ( )+ ( ) = ( )+ ( ) = ( ) ( )u u t x y z t x y u v t x y z t x y u w t x y, , , , , , , , , , , , 3x x y y z

in which t points time; u, v and w are displacement compo-
nents of a point in the middle surface; ψx and ψy are the rotation of
the middle surface normal about y and x axes, respectively.

3.1. Flow loading

To investigate the interaction forces of the fluid flow and na-
noshell walls, it is assumed that the flowing fluid is in-
compressible, inviscid, isentropic and irrotational. It is reported
[47] that the perturbation pressure applied on the wall of nano-
shell is given by
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in which U shows the flow velocity in the axial direction; ρf is

the fluid density; α = π
m

m
L

and m stands the number of axial half
waves; In represents the modified Bessel function of the first kind
of order n and ′In is its derivative; also n denotes for the number of
circumferential waves.

Furthermore it should be mentioned that in nano-scale, the
continuum flow regime may not be valid any more [48]. With
considering the Knudsen number Kn, one can model the slip
boundary conditions between the nano-flow and walls of nano-
shell properly. In this regard, the flow velocity can be expressed as
[48, 49]

= × ( )−U VCF U 6no slip

in which −Uno slip denotes the flow velocity of no-slip boundary
conditions and VCF is the average velocity correction factor as
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where σv is assumed to be 0.7 and
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Fig. 1. Schematic of fluid-conveying FG nanoshell.
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