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a b s t r a c t

Cross sections of modern bridges are generally build with stiffened plated elements. The verification
methods given in Eurocode EN 1993-1-5, to obtain the ultimate buckling resistance of plated structures,
result in a time consuming procedure. In addition, the methods are mainly based on the elasticity theory
and reduction factors from e.g. experiments are needed. Therefore, an alternative approach to obtain the
ultimate resistance of unstiffened and stiffened plates is used. The method is based on a strain-depen-
dent and geometric nonlinear yield-line theory including imperfections. This theory makes it possible to
approximate the decreasing part of the load–deflection curve of such stability sensitive structures. The
ultimate resistance, as maximum of the load–deflection curve, is approximated by a defined limit value.
Therefore, the use of additional reduction factors is not necessary. Collapse mechanisms, which have
been determined with the Finite Element Method (FEM) beforehand, are needed in order to apply the
yield-line theory.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cross sections of modern bridges are generally build with
stiffened plated elements. By introducing the design rules of the
Eurocode, the verification procedure of such elements was in-
cluded in EN 1993-1-5 [1]. The two given design methods, the
“effective sections method” and the “reduced stresses method”, are
mainly based on the elasticity theory. Both methods need as input
value the slenderness λ of the system, which lead in general to the
required reduction factor ρ. This reduction factor contains the
missing effects resulting from imperfections and nonlinear beha-
viour of the structure. The reduction factor often came from ex-
periments or from simulations with the FEM and can be used to
obtain the ultimate resistance of the plate.

A proposal, to obtain the ultimate resistance of typical un-
stiffened and stiffened plates, based on the yield-line theory, is
made in the following sections. The aim is to provide a simple
method for practical use. Therefore, it is necessary to determine
the load–deflection curve of such plates, so that the ultimate re-
sistance as maximum of the load–deflection curve can be found
without the need of additional reduction factors. This is possible,
because the used theory includes effects from plasticity and

geometrical nonlinear behaviour and therefore the real behaviour
can be described in good approximation, see [2–7].

The load–deflection curve can be approximated by two curves:
the increasing part and the decreasing part, as shown in Fig. 1,
which are usually described by the out-of-plane deformations w.
The increasing part can be described through the elasticity theory,
see e.g. [10]. For practical use, this part can also be calculated with
the Finite Element Method (FEM). The decreasing part can be
described through the plasticity theory, especially with a gen-
eralized yield-line theory. The intersection point of both curves
give an upper bound for the ultimate limit load, see e.g. [2,11].

In order to obtain the intersection point, the increasing part of
the load–deflection curve is needed. An other criterion is used in
the following sections. In a good approximation, the maximum of
the load–deflection curve is also reached when the membrane-
stresses first reach the yield-strength fy, which happens for plated
structures at a longitudinal displacement = = ·u u a f E/y y , see e.g.
[10]. By using the described procedure including a strain-depen-
dent yield-line formulation and the described criterion, a good
approximation of the load–deflection curve and the ultimate limit
load can be obtained without the need of additional reduction
factors, see Fig. 2. A similar method was amongst others used in
[11] for unstiffened plates with one free edge.

The obtained ultimate load is an upper bound and therefore an
approximation to the real ultimate load. In order to get a more
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realistic result and a better approximation of the ultimate load the
following three geometric proposals were used (see Fig. 2):
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The proposals 2 and 3 make only sense for structures with a
supercritical structural behaviour, i.e. σ σ<cr ult and therefore
σ σ= cr1 is used. Unstiffened plates with a ratio α = >a b/ 1 typically
have this structural behaviour. Stiffened plates, similar to a col-
umn, can also behave column-like, i.e. σ σ>cr ult . In this case, the
connecting line between point 1 and 2 in Fig. 2 becomes hor-
izontal and σ σ=approx 2 is used as approximation of the ultimate
load. This also means that σ σ σ= <ult cr1 .

2. Determination of collapse mechanisms and yield-line
analysis

The procedure described in Section 1 is based on a kinematic
collapse mechanism, which is not yet known but which can be
obtained with the FEM. Subsequently, the obtained mechanisms
will be described analytically with the help of the generalized
yield-line method, to obtain the load–deflection curve. The next
subsections contain a short description of how this methods work.
The procedure will be applied especially to unstiffened and stif-
fened plates with the following methodology:

1. Determination of collapse mechanisms by using the FEM

(Software Ansys [12]),
2. Preparation and description of the obtained mechanisms by

using the generalized yield-line method,
3. Comparison of the approximated load–deflection curve and the

ultimate load with the results obtained with the FEM and the
ultimate load coming from EN 1993-1-5.

The collapse mechanism for unstiffened plates under pure
compression is well known, see Fig. 3. Therefore, the scope of
application was extended to a stress gradient of ψ≥ ≥1 0. For
stiffened plates the focus lies on plates build with trapezoidal
stiffeners, see Table 1, which is typical for plated structures of
modern bridges.

2.1. Collapse mechanisms by FEM

Possible collapse mechanisms can be determined through ex-
perimentation but also numerically by using the FEM. This last one
is used to examine a wide range of unstiffened and stiffened
plates. Therefore, it is necessary to perform a geometric and ma-
terial nonlinear analysis including imperfections. A bilinear stress-
strain curve (ideal elastic, perfect plastic) is used for the material
behaviour. The main problem when calculating plates under
compression is, how to model the shape of the imperfections.
Especially in the case of stiffened plates, the combination of the
imperfections of the global panel and the local subpanels requires
special attention.

Information about how to deal with the shape and amplitude of
the imperfections can be found in Annex C of EN 1993-1-5. Here,
an equivalent geometric imperfection shape is used, in form of a
combination of different eigenmodes from a linear buckling

Fig. 1. Load–deflection curve of an unstiffened plate under compression, see e.g. [2,5,8,9].

Fig. 2. Approximation of the load–deflection curve and the ultimate load, see [7].
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