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a b s t r a c t

The effects of initial imperfection on postbuckling behaviour of laminated plates subject to end short-
ening stain are investigated in this paper. Different boundary conditions and lay-up configurations are
considered and classical laminated plate theory is used for developing the equilibrium equations. The
equilibrium equations are solved directly by substituting the displacement fields with equivalent finite
double Chebyshev polynomials. This technique allows imposing different combinations of boundary
conditions on all edges of composite laminated plates. The final nonlinear system of equations is ob-
tained by discretizing both equilibrium equations and boundary conditions with finite Chebyshev
polynomials. Nonlinear terms caused by the product of variables are linearized by using quadratic ex-
trapolation technique to solve the system of equations. Since number of equations is always more than
the number of unknown parameters, the least squares technique is used to solve the system of equations.
Some results for angle-ply and cross-ply composite plates with different boundary conditions are
computed and compared with those available in the literature, wherever possible.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Structures made of laminated composite material are increas-
ingly used in aerospace, automotive, marine and other engineering
applications. The high strength and stiffness properties along with
low weight, good corrosion resistance, enhanced fatigue life and
low thermal expansion are the most well-known characteristics of
composite materials. These advantages along with the increasing
usage of these materials stimulate the advancement in analysis of
laminated beams, plates and shells. Many researches have been
carried out on beams, plates and shells with composite materials
and also functionally graded materials. In order to fully exploit the
lightweight potential of such structures, it is of high practical
importance to consider load ranges beyond bifurcational buckling.
They often have significant and unavoidable initial geometrical
imperfections, so considering the imperfection is necessary.
Therefore, the investigation of initial imperfection on postbuckling
behaviour of these structures are also very important.

Buckling and postbuckling behaviour of laminated composite plates
was considered by many researchers in the past. Turvey and Marshall
[1] and Argyris and Tenek [2] presented excellent reviews on methods
investigating buckling and postbuckling behaviour of structures.

Loughlan [3, 4] investigated the effects of local buckling and
post-local buckling mechanism on the axial stiffness and failure of
uniformly compressed isotropic I-section and box-section struts.
They obtained complete loading history of the compression struts
from the onset of elastic local buckling through the nonlinear
elastic and elasto-plastic postbuckling phases of behaviour to final
collapse and unloading. Dawe et.al. [5] employed semi-analytical
finite strip method (FSM) to investigate postbuckling behaviour of
composite structures under end-shortening. The finite strip
method can be considered as a kind of finite element method in
which a special element called strip is used. The basic philosophy
is to discretize the structures into longitudinal strips and inter-
polate the behaviour in the longitudinal direction by different
functions, depending on different versions of FSM and in the
transverse direction by polynomial functions. Wang and Dawe [6]
developed a spline finite strip method on studying relatively thick
composite plates using First order Shear Deformation plate Theory
(FSDT). Ovesy et.al. [7] developed two finite strip methods for
predicting the geometrically non-linear response of rectangular
thin plates with simply supported ends when subjected to uniform
end shortening in their plane. They [8–10] also employed different
versions of finite strip methods to predict postbuckling behaviour
of box and channel sections under end shortening. Stamatelos et.
al. [11] developed a methodology for the analytical assessment of
local buckling and post-buckling behaviour of isotropic and
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orthotropic stiffened plates. In their approach, it is assumed that
the stiffened panel segment is located between two stiffeners,
while the remaining panel is replaced by equivalent transverse
and rotational springs of varying stiffness, which act as elastic
edge supports. Ghannadpour et.al. introduced a full analytical fi-
nite strip method to calculate the relative postbuckling stiffness of
I-section and Box-section struts [12,13]. Ovesy et.al. [14] also
evaluated the buckling and post-buckling behaviour of delami-
nated composite plates with multiple through-the-width delami-
nations. They handled both local buckling of delaminated sub-
laminates and global buckling of the whole plate. Lui and Lam [15]
employed a finite strip method for predicting response of lami-
nated plates with initial imperfection in very general shape when
subjected to progressive end shortening. Zou and Lam [16] de-
veloped procedure from CLPT formulation to higher order plate
theory in order to calculate postbuckling behaviour of thick plates.
Ovesy et al. [17,18] used both spline and semi-analytical finite strip
methods for predicting the postbuckling response of rectangular
composite laminated plates with initial imperfections, when sub-
jected to progressive end shortening.

In other researches, Shen et al. [19,20] investigated the post-
buckling analyses of composite and functionally graded plates
under thermal and mechanical loads. He also [21,22] analysed
simply supported plates with initial imperfection in thermal en-
vironment. These studies are mostly limited to the selection of
simply supported boundary conditions on all edges of the plates.

However, in some methods like spectral methods, the mathe-
matical polynomials are used to estimate the displacement fields.
These polynomials allow one to analyse the plates with combi-
nation of different boundary conditions on all edges. Chebyshev
polynomials are one of these powerful mathematical polynomials
with useful properties that can help to predict the plate’s
behaviour.

For the first time, Alwar and Nath [23] used Chebyshev poly-
nomials to solve equilibrium equations and analysed the nonlinear
behaviour of isotropic circular plates. They obtained the solution of
the differential equation as a sum of the Chebyshev polynomials.
Nath and Alwar [24] extended their method to the rectangular
domain based on classical plate theory. In circular domains, uni-
variate Chebyshev polynomials could be used to solve equilibrium
equations while for rectangular domains, bivariate Chebyshev
polynomials are necessary. Shukla and Nath [25] have studied
large deflections of moderately thick composite plates with dif-
ferent lay-up and various boundary conditions under lateral
pressure. They [26] also analysed buckling and post-buckling of
perfectly flat angle-ply laminated plates subjected to combined in-
plane mechanical load and temperature gradient across the
thickness. While in this paper, the effects of initial imperfection on
postbuckling behaviour of laminated plates subject to end short-
ening stain are investigated for different boundary conditions and
lay-up configurations. By substituting the displacement fields with
equivalent finite double Chebyshev polynomials, the equilibrium
equations are solved directly. Using this method allows one to
analyse the composite laminated plates with combination of dif-
ferent boundary conditions on all edges. The final nonlinear sys-
tem of equations is obtained by discretizing both equilibrium
equations and boundary conditions with finite Chebyshev. The
least squares technique is used to solve the system of equations
since number of equations is always more than the number of
unknown parameters. Some results for angle-ply and cross-ply
composite plates with different boundary conditions are com-
puted and compared with those available in the literature, wher-
ever possible.

2. Theoretical formulation

Fig. 1 shows a typical rectangular imperfect plat in arbitrary
coordinate. The plate is made of laminated composite material.
Classical laminated plate theory (CLPT) is used to form the equi-
librium equations of plates.

These equations are shown as [27]
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Where M and N are the resultant forces and moments respec-
tively and Ν( )w is defined as [27]:
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To solve the above equations, the displacement fields based on
CLPT are defined as:
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Where u v w, , are components of displacement in the x, y and z
directions at a general point, respectively, whilst u v w, , are de-
fined at the middle surface of the plates ( =z 0).

Substitution of the displacement fields, Eq. (2), in the green’s
expression for nonlinear strains with usual Von-Karman assump-
tions leads to the three strain components for a perfect plate as
[27]:
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Where ε̄xx and ε̄yy are axial strains, γ̄xy is shear strain and ε and κ
are membrane and flexural strain vectors, respectively.

If *w is assumed as small initial imperfection, the net strain
components in the middle surface of the imperfect plate become
[16]
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