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a b s t r a c t

A family of three finite elements is developed for the lateral-torsional buckling analysis of thin-walled
members with doubly symmetric cross-sections. The elements are based on a recently derived varia-
tional principle which incorporates shear deformation effects in conjunction with a special interpolation
scheme ensuring C1 continuity. One of the elements is developed such that it consistently converges
from above while another element is intended to consistently converge from below. The third element
exhibits fast convergence characteristics compared to other elements but cannot be guaranteed to
provide either an upper or a lower bound solution. The formulation incorporates the ability to enforce
any set of linear multi-point kinematic constraints. The validity of the solution is established through
comparisons with other well-established numerical solutions. The elements are then used to solve
practical problems involving simply supported beams, cantilevers and continuous beams under a variety
of loading conditions including concentrated loads, linear bending moments and uniformly distributed
loads. The effect of lateral and torsional restraints and the location of lateral restraint along the section
height on lateral-torsional buckling capacity of beams are also examined through examples.

& 2016 Elsevier Ltd. All rights reserved.

1. Motivation

In a recent study, Wu and Mohareb [1,2] developed a shear
deformable theory and finite element formulation for lateral-tor-
sional buckling of doubly-symmetric cross-sections. The element
developed was based on linear interpolation of the displacement
fields, leading to a C0 continuous element, and was shown to
(a) converge from above, in a manner similar to conventional finite
element formulations, and (b) to exhibit particularly slow-con-
vergence characteristics as hundreds of degrees of freedom were
needed to model simple problems. Starting with the same varia-
tional principle, the present study develops an elaborate inter-
polation scheme leading to C1 continuity and resulting in a family
of finite elements for the lateral-torsional buckling analysis of
members with superior characteristics; (1) It considerably accel-
erates the convergence characteristics of the solution, and (2) In
one of the resulting elements, discretization errors are shown to
lead to lower bound estimates of the buckling capacity, a desirable
feature from a design viewpoint. In the second element, they were
shown to lead to an upper bound estimate while the third element
exhibits the fastest convergence characteristics. The new solution
is subsequently used to investigate the effect of lateral and/or

torsional restraints and the effect of lateral bracing location along
the web height on the lateral-torsional buckling capacity of simple
and multi-span beams.

2. Literature review

Numerous studies have investigated the elastic lateral-torsional
buckling (LTB) resistance of doubly-symmetric I-beams. Using the
Rayleigh–Ritz method, Salvadori [3] developed the LTB solution of
simply supported and continuous beams subject to a combination
of axial and unequal end moments. Based on the finite difference
technique, Poley [4] solved the governing buckling differential
equations for cantilever beams under uniformly distributed load.
Using a successive-approximation technique for solving differ-
ential equations, Austin et al. [5] developed the critical LTB solu-
tions for beams with full torsional end restraints and partial ro-
tational end restraints about the weak axis subjected to uniformly
distributed loads and mid-span point loads. Load locations relative
to the section centroid were also considered. Based on a numerical
integration technique, Hartmann [6] evaluated the effect and
partial lateral, torsional, and weak axis bending constraints on the
LTB capacity of beams subjected to point loads, with interior
supports for simply supported and continuous two-span and
three-span beams. Krajcinovic [7] and Barsoum and Gallagher [8]
developed a finite element for buckling analysis based on the
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Vlasov thin-walled beam theory. Powel and Klingner [9] devel-
oped a thin-walled beam finite element to obtain the LTB capacity
of simply supported and continuous beams subject to general
loading. Their solution was applicable to doubly symmetric and
mono-symmetric cross-sections. The effect of load position re-
lative to shear center and that of lateral and torsional restraints
were incorporated into the solution. Using the beam element de-
veloped by Gallagher and Padlog [10], Nethercot and Rockey [11]
investigated the lateral stability of simply supported beams with
discrete lateral restraints, discrete torsional restraints, and both
lateral and torsional restraints, subject to uniform moments. Also,
Based on the element, Nethercot [12] examined the effect of load
type and lateral, torsional, and warping restraints on LTB of can-
tilevers and proposed expressions for the effective length of can-
tilevers governed by LTB. Using the same element, Nethercot [13]
studied the effect of load type on LTB of simply supported beams
braced laterally or torsionally under uniform moments, mid-span
point load, and uniformly distributed load. Based on the finite
integral method, Kitipornchai and Richter [14] studied the LTB of
simply supported beams with discrete rigid intermediate transla-
tional and rotational restraints and subjected to concentrated load,
end moments and uniformly distributed load. Kitipornchai et al.
[15] extended their work to investigate the effect of intermediate
translational and rotational discrete restraints on LTB capacity of
cantilevers under uniformly distributed and concentrated loads.
Based on the direct variational approach, Assadi and Roeder [16]
studied the LTB of cantilevers with continuous rigid and elastic
lateral restraints. Their study investigated the effects of load
height, height of lateral restraint and stiffness. Based on a closed-
form solution, Tong and Chen [17] investigated the LTB capacity of

simply supported beams with symmetrical or mono-symmetrical
I-sections, either restrained laterally or torsionally at mid-span,
subjected to uniform bending moments. Wang and Nethercot [18]
developed a thin-walled beam element for conducting a three-
dimensional ultimate-strength analysis to assess bracing require-
ments for laterally unrestrained beams. They investigated simply
supported I-beams with a single, three, or five equally spaced
discrete torsional restraints subjected to central transverse con-
centrated load applied to the upper flange. Attard [19] developed
solutions for estimating LTB capacity of beams with mono-sym-
metric and doubly symmetric sections and general boundary
conditions. Albert et al. [20] developed a finite element model
consisting of four-node plate elements for the web and two-node
line elements for the flanges. This model predicts the LTB re-
sistance of beams under various loading and boundary conditions
while capturing distortional effects. Using this finite element
model, Essa and Kennedy [21] developed effective length factors
for built-in cantilevers under top and bottom flange lateral re-
straints and load positions relative to the shear center. Using the
same element, they also developed a design approach for canti-
lever-suspended-span constructions [22]. Wang et al. [23] used
the Rayleigh–Ritz method to determine the optimal locations for
rigid lateral and torsional intermediate restraints to maximize the
elastic LTB capacity of I-beams. Using the elastic buckling finite
element program, BASP (Buckling Analysis of Stiffened Plates)
developed by Akay et al. [24] and Choo [25], Yura [26] developed
rules for bracing requirements based on the loading configuration,
load height relative the shear center, location of restraint and
cross-section distortion. Based on the Babnov–Galerkin method
and the two-node beam finite element, Lim et al. [27] evaluated

Notation

A Cross-sectional area
[ ( )]B z Matrix relating displacement fields to integration

constants
{ }Cst Vector of integration constants
D D,hh xx Properties of cross-section related to shear

deformation
d Depth of cross-section

( )d z T Field displacements
E Modulus of elasticity
{ }F Vector of Lagrange multipliers
G Shear modulus
[ ]H Matrix relating nodal displacements to integration

constants
I I,xx yy Moments of inertia of the cross-section about x-axis

and y-axis respectively
ωωI Warping constant
J St. Venant torsional constant
[ ]Kf Stiffness matrix due to flexural stresses
[ ]KG N Geometric matrix due to normal forces
[ ]KG M Geometric matrix due to bending moments
[ ]KG V Geometric matrix due to shear forces
[ ]KG qy Geometric matrix due to load position effect of the

distributed transverse load
[ ]KG qz Geometric matrix due to load position effect of the

distributed axial load
[ ]KG Qy Geometric matrix due to load position effect of the

concentrated transverse load
[ ]Ks Stiffness matrix due to other shear stresses
[ ]Ksv Stiffness matrix due to Saint Venant shear stresses
L Length of a finite element

Lm Span of the member
[ ( )]L z Matrix of shape functions
mi Roots of quadratic eigenvalue problem
M M,1 2 Internal bending moment at both end of an element

( )M zxp Strong axis bending moment as obtained from pre-
buckling analysis

N N,1 2 Internal normal forces at both ends of an element
( )N zp Resultant of the normal stresses obtained from pre-

buckling analysis
[ ]P Matrix of user-input coefficients which linearly relate

any set of nodal displacements
q q,y z Distributed load applied to a member acting along the

y- and z-direction respectively
[ ]S Structure elastic stiffness matrix
[ ]SG Structure geometric stiffness matrix
[ ]( = )S i to1 12i Sub-matrices needed to determine element

stiffness matrices
ub Lateral buckling displacement
uN

T Vector of nodal displacements
{ }us Vector of unknown displacements of the structure
U Internal strain energy
V Load potential energy
V V,1 2 Internal shearing forces at both end of an element

( )V zyp Resultant of shear force component along y-direction
obtained from pre-buckling analysis

x y z, , Cartesian coordinates
β End moment ratio
λ Load multiplier
π Total potential energy
θ θ,yb zb Buckling rotation angles about y, z axes, respectively
ω ( )s Warping function
ψb Warping deformation (1/Length)
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