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a b s t r a c t

The buckling analysis of thin rectangular plates under locally distributed compressive edge stresses is a
challenging problem if the point discrete methods are to be used. To obtain accurate buckling stress, one
of the important factors is that the in-plane stress distributions within the plate prior to buckling should
be accurate enough. Although it is possible to get analytical solutions for the in-plane stress distributions,
but the expressions are very complicated since a stress-diffusion phenomenon exists. The differential
quadrature method (DQM), being a point discrete method, has been successfully used in a variety of
fields including the buckling analysis of thin rectangular plates under nonlinearly distributed edge
compressions. However, it is rare to employ the DQM directly to solve problems of rectangular plates
under locally distributed or point loads. To solve the challenging problem by using the DQM, novel
formulations are presented in this paper. The locally distributed stress is first work-equivalently to point
loads at all inner grid points on the loaded edge, then the normal stress boundary condition is nu-
merically integrated before being discretized in terms of the differential quadrature. In this way accurate
in-plane stress distributions can be obtained by the DQM without any difficulties. Buckling analysis of
rectangular plates under either uniaxial or biaxial locally distributed compressive stresses is successfully
performed. The accuracy of the DQ data is validated by comparing themwith existing analytical solutions
and finite element data. It is demonstrated that the compactness and computational efficiency of the
DQM are retained. Accurate buckling loads are presented for rectangular plates with nine combinations
of boundary conditions, various aspect ratios and load ratios. Some new results are also provided for
references.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The buckling problem of thin rectangular plates subjected to
in-plane compressive and/or shear loading is important in the
aircraft and civil industries [1]. Thin rectangular plates under lo-
cally distributed edge compressions, one of the most common load
types in engineering practice [2], is a challenging problem since a
stress-diffusion phenomenon exists. All three in-plane stress dis-
tributions vary with x as well as y and are very complicated.
Therefore, obtaining accurate buckling load is not an easy task
analytically. Very few analytical solutions are available for thin
rectangular plates under nonlinearly distributed or locally dis-
tributed edge compressions [1,2].

Recently, Mijušković et al. [2] presented an accurate buckling
analysis for thin rectangular plates under locally distributed
compressive stresses. The accurate results are obtained by using

the Ritz method together with the exact in-plane stress distribu-
tions. It is seen that analytical procedures for the exact stress and
displacement function determinations in forms of series are very
complex, thus commercial software such as Mathematica or Maple
has to be resorted for symbolic computations.

Studies show that the differential quadrature method (DQM)
can yield accurate buckling loads for rectangular plates under
uniformly or non-uniformly distributed edge compressions [3,4].
For rectangular plates under cosine distributed edge compres-
sions, the same accurate buckling stresses are obtained by the
DQM as the ones with the exact in-plane stress distributions [2].
The solution accuracy is even better than the one of the finite
element method (FEM) with fine meshes [2]. The DQM is simple
and computationally efficient and has been successfully applied in
a variety of fields [4,5]. Being a numerical method, the DQM can be
used to obtain accurate solutions if the plate material is not iso-
tropic [4].

Similar to the conventional point discrete methods such as the
collocation method and finite difference method (FDM), however,
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the DQM has some difficulties in dealing with discontinuously or
locally distributed loads. From the literature review, it is rare to
use the DQM to solve problems in the area of structural mechanics
involving discontinuously distributed loads and/or discontinuous
boundary conditions. With uniformly distributing the con-
centrated load in a small area, the wavelet-based DQM [6] yields
reasonably accurate deflection for a beam under a concentrated
load. Han et al. [7] investigate the effect of different treatments of
the concentrated load or locally distributed loads on the accuracy
of DQ solutions. These treatments on the concentrated load or
locally distributed loads are, however, only physically sound but
mathematically not clear. The rate of convergence of the DQ so-
lution is relatively low, thus only a little success is achieved in [6,7]
to deal with the point and locally distributed loads. The problem
involving discontinuously distributed loads and/or discontinuous
boundary conditions is generally regarded as a challenge when
point discrete methods such as the FDM and DQM are to be used
for solutions.

According to the best of authors’ knowledge, no one has used
the conventional DQM to solve the buckling problem of thin rec-
tangular plates under locally distributed loads thus far. Although
the difficulties can be overcome by using the differential quad-
rature element method (DQEM) [4,8], however, the simplicity and
computational efficiency will be lost. For thin rectangular plates
under uniaxial or biaxial locally distributed stresses, the problems
to be investigated herein, at least three or nine DQ elements are
needed to model the entire plates. Therefore, the solution proce-
dures will be complicated since assemblage procedures are nee-
ded. Using more DQ elements definitely reduces the computa-
tional efficiency. Therefore it is desirable to directly use the DQM
to obtain accurate solutions.

Very recently, the buckling problem of rectangular plates under
compressive point loads was successfully solved by the DQM [9].
The method to deal with the Dirac-delta function in [4] is used to
treat the stress boundary conditions. A novel formulation is pro-
posed to treat the point load. Accurate buckling loads are obtained
by the DQM for thin rectangular plates under uniaxial and biaxial
point loads. It is demonstrated that the advantages of the DQM,

such as simple and computational efficient, are retained. However,
the novel formulation presented in [9] is only limited to the cases
when the point load is applied at the middle point of each edge. In
other words, doubly symmetric condition can be used and the
point load is always located at one grid point when DQM with odd
number of grid points are used. In practice, the point load may be
applied at locations other than the middle point of the edge.

In this paper, novel formulations are presented to deal with the
locally distributed compressive edge stresses. The formulations are
general enough and can be used for arbitrary locally distributed
stresses. Detailed formulations and solution procedures by using
the DQM are given. Convergence studies are performed. Some DQ
results are verified by comparing them with existing analytical
solutions and finite element data. Accurate buckling loads of thin
rectangular plates with nine combinations of boundary conditions,
various aspect ratios and load ratios are obtained by using the
DQM together with the novel formulations. Some results are new
and can be served as a reference for other researchers to develop
new numerical methods. Finally some conclusions are drawn
based on the results reported herein.

2. In-plane stress analysis by the DQM

Consider an isotropic thin rectangular plate with length a,
width b and thickness h. The Young’s modulus and Poisson’s ratio
are denoted by E and μ , respectively. Body force is not considered
in present investigations.

In terms of displacement components u and v, the governing
equations can be expressed by
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The cases considered in this paper are rectangular plates under

Nomenclature

DQM differential quadrature method
FEM finite element method
FDM finite difference method
DQEM differential quadrature element method
DQ differential quadrature
a, b, h length, width and thickness of a rectangular plate
E,μ Young’s modulus and Poisson’s ratio of plate material
u, v in-plane displacement components
w transverse displacement
σ σ τ¯ ¯ ¯, ,x y xy0 0 0 applied edge normal and shear stresses
l l,x x0 starting x coordinate and the length where σ τ¯ ¯,y xy0 0

applied on = ±y b/2
l l,y y0 starting y coordinate and the length where σ τ¯ ¯,x xy0 0

applied on = ±x a/2
N the total number of grid points in x and y directions
ξ η,i i grid points in x and y directions

= =r l b r l b/ , /y y y y0 0 non-dimensional length and starting co-
ordinate along edges = ±x a/2

= =r l a r l a/ , /x x x x0 0 non-dimensional length and starting co-
ordinate along edges = ±y b/2

WP equivalent work done by the applied edge stress
ςk, ( = − )H k N2, ... , 1k abscissas and weights in Gauss

quadrature
Pj work equivalent point load

ξ η( ) ( )l l,j j Lagrange interpolation function
δ( − )y yj Dirac delta function
F F,xj yj work equivalent stress applied on the edge grid point
A A,ij

x
lk
y weighting coefficients of the first order derivative w.r.

t. x,y
B B,ij

x
lk
y weighting coefficients of the second order derivative

w.r.t. x,y
C C,ij

x
lk
y weighting coefficients of the third order derivative w.r.

t. x,y
D D,ij

x
lk
y weighting coefficients of the fourth order derivative w.

r.t. x,y
D flexural rigidity of the thin rectangular plate
N N N, ,x y xy

in-plane resultant force components
Mx, My bending moments
MMWC the method of modification of weighting coefficient
P0 critical buckling load
λ eigen-value
K non-dimensional buckling coefficient
KT the non-dimensional buckling coefficient (point load)
C, S clamped or simply supported boundary
f ratio of applied edge normal stresses (σ σ/y x0 0)
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