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a b s t r a c t

The paper is devoted to a new shape of a shell of revolution with negative Gaussian curvature. The main
part of the meridian of the shell is a plane curve of the Huygens tractrix. Geometrical properties of the
middle surface of the shell of revolution are presented. The membrane state of stress for a family of
shells with constant capacity and constant mass under uniform external pressure is analysed. The critical
pressure, buckling modes and equilibrium paths for the family of shells are calculated with the use of the
FEM (the ANSYS system). Results of the analytical and numerical investigations are presented in tables
and figures. A stable post-critical behaviour of presented shells is pointed out which is not typical for
most shell structures.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The post-buckling behaviour of elastic structures is a significant
design feature. The knowledge of the equilibrium paths is neces-
sary for the design engineering with respect to operational safety
of machinery. Equilibrium paths of classical shells of revolution
with positive Gaussian curvature are unstable. Objective basic
research for these problems was presented by Hutchinson and
Koiter [1], Budiansky [2], Simitses [3] and Riks [4]. Numerical
methods in buckling analysis of shells were described by Bushnell
[5]. Reviews of buckling problems of thin shells are presented by
Teng [6], Krivoshapko [7,8], Jasion and Magnucki [9], and Pan and
Cui [10]. Asymptotic methods in the buckling analysis of elastic
shells were elaborated by Tovstik and Smirnov [11]. The post-
buckling behaviour of elastic shells of revolution was studied by
Grigolûk and Lopanitsyn [12], Teng and Hong [13] and Kere and
Lyly [14]. Problems of stabilisation of equilibrium paths for elastic
structures were studied by Bochenek and Kruźelecki [15], Boche-
nek and Foryś [16], Bielski and Bochenek [17], Król et al. [18],
Kruźelecki and Trybuła [19–21]. The numerical analysis of equili-
brium paths of shells of revolution with positive and negative
Gaussian curvature was presented by Jasion [22,23] and Jasion and
Magnucki [24].

The subject of the present paper is cylindrical–pseudospherical
and tori-pseudospherical shells of revolution. The meridians of
these structures are the plane curves composed of a line segment

and the Huygens tractrix or a circular arc and the Huygens tractrix.
The goal of the present investigation is to determine the stress
distribution in such shells, to analyse the influence of the geome-
trical parameters on the buckling load and buckling shape and to
determine the character of the post-buckling behaviour of pro-
posed shells. The last goal is of the most importance since, as it
was shown in [22,23], for shells with negative Gaussian curvature
this behaviour may be stable.

2. Special pseudospherical shells of revolution

2.1. Geometry of the middle surface of the pseudospherical shell

The surface called a pseudosphere can be formed by rotation
of the Huygens tractrix around the x-axis (Fig. 1). The Huygens
tractrix curve [25] is defined as follows:

~x ¼ 7 arccosh
1
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� �
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where ~x ¼ x=a, ~r ¼ r=a – dimensionless coordinates, a – positive
constant (the size). Parameterisation in the Cartesian coordinates

~x ¼ ln tan
α
2

� �
þ cosα; ~r ¼ sinα; 0rαrπ: ð2Þ

The principal curvature radii are as follows:

~R1 ¼
1

tanα
; ~R2 ¼ � tanα ð3Þ

where ~R1 ¼ R1=a – the dimensionless principal radius of the
meridian, ~R2 ¼ R2=a – the dimensionless principal radius of the
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parallel circle. The Gaussian curvature K ¼ 1=ðR1R2Þ ¼ �1=a2 is
constant and negative for the whole pseudosphere.

2.2. Cylindrical–pseudospherical shell

The meridian of the cylindrical–pseudospherical shell is com-
posed of a line segment and the Huygens tractrix (Fig. 2). The
capacity of the shell (Fig. 2) is given by the following formula:

V0 ¼ 2πa3 ~x1 ~r
2
1þ

Z ~x2

~x1

~r2 d ~x
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After integration the size a can be written as

a¼ 3V0
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For the pseudospherical shell ( ~x1 ¼ 0, α1 ¼ π=2, α2 ¼ π) the capa-
city V ðpsÞ

0 ¼ ð2=3Þπa3. The mass of the shell (Fig. 2)

ms ¼ Astsρs; ð6Þ
where the lateral area

As ¼ 4πa2 ~x1 ~r1þ
1
2
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~r ~R1 dα
� �

: ð7Þ

Taking into account Eqs. (2) and (7) the thickness of the shell,
based on Eq. (6), can be expressed as

ts ¼
ms

2π 2 1þ ~x1ð Þ~r1� 2� ~r2ð Þ~r2½ �a2ρs
; ð8Þ

where ρs – mass density of the shell material. For the pseudo-
spherical shell ( ~x1 ¼ 0, α1 ¼ π=2, α2 ¼ π) the lateral area
AðpsÞ
s ¼ 4πa2.
The assumption of the values of the capacity Vs ðm3Þ and the

mass ms (kg) for the shell enables us to calculate the size a and the
thickness ts from (5) and (8), respectively.

2.3. Tori-pseudospherical shell

The meridian of the tori-pseudospherical shell is composed of a
circular arc and the Huygens tractrix (Fig. 3). The toroidal part of
the shell is shown in Fig. 4. The dimensionless radius of the torus

~r0 ¼
~x1

sinα1
¼ ~x1

~r1
; ð9Þ

and the dimensionless coordinate

~rðφÞ ¼ ~r1þ ~r0 cosα1þ cosφ
	 


; 0rφrπ�α1: ð10Þ

The capacity of the shell (Fig. 3)
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After integration the size a can be written as

a¼ 3V0
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The mass of the shell (Fig. 3) is given by Eq. (6). The lateral area As

is
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Fig. 1. The pseudosphere.

Fig. 2. The cylindrical–pseudospherical shell.

Fig. 3. The tori-pseudospherical shell.

Fig. 4. Toroidal part of the shell of revolution.
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