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a b s t r a c t

The present paper is concerned with the analysis of the ratcheting behaviour of elasto-plastic thin-
walled pipes under internal pressure and subjected to cyclic axial loading. Understanding the behaviour
of this kind of structure at different load levels is of critical importance in a range of engineering
applications such as in the design of structural components of power and chemical reactors. Depending
on the kinematic hardening, the pipe may exhibit a ratcheting behaviour in the circumferential direction,
which leads to a progressive accumulation of deformation. Many different constitutive theories have
been proposed to model the kinematic hardening under such kind of loading history. The present paper
presents a simple local criterion to indicate whether or not the pipe may exhibit a progressive
accumulation of deformation. Such criterion is independent of the choice of the evolution law adopted
for the backstress tensor. As an example, a semi-analytic approach using a mixed nonlinear kinematic/
isotropic hardening model is proposed to be used in a preliminary analysis of this kind of structure.

& 2015 Published by Elsevier Ltd.

1. Introduction

When a metallic component is subjected to cycles of mechanical
loading beyond the elastic limit many important phenomena can
occur, what may lead to structural failure. Different structural situa-
tions exist in which this combination of sustained or primary loading
and secondary cyclic loading can lead to incremental collapse or what
is known as ratcheting. For instance, pressurised metallic tubes under
reversed bending [1] or pressurised metallic tubes subjected to cyclic
push pull [2]. These structures under such load combinations are
known to exhibit continued strain growth in the hoop direction.

Understanding the behaviour of this kind of structure at different
load levels is of critical importance in a range of engineering applica-
tions such as in the design of structural components of power and
chemical reactors (primary heat transport system of nuclear power
plants, for instance). The reliability of structural integrity prediction
depends strongly on the physical adequacy of the elasto-plastic con-
stitutive equations considered in the analysis. Many papers concerned
with ratcheting failure mechanisms or with constitutive models for
ratcheting have been performed in the last years. Since the classical
works of Chaboche (see [3], for instance), most works were concerned
with an adequate modelling of the kinematic hardening to improve
the description of ratcheting effects and to include a better modelling

of multiaxial behavior [4–7]. In [4], a complete model was developed,
including isotropic hardening, to describe the ratcheting behaviour of
316L stainless steel at room temperature. In this study, one particular
kinematic hardening rule was selected aiming at describing both the
shape of the normal cyclic stress–strain relations and the ratcheting
results. The main concern, as discussed in [5], was to propose rules
that induce much less accumulation of uniaxial and multiaxial ratch-
etting strains than the Armstrong and Frederick rule. In [5], kinematic
hardening rules formulated in a hardening/dynamic recovery format
were examined for simulating racheting behaviour. These rules, chara-
cterized by decomposition of the kinematic hardening variable into
components, are based on the assumption that each component has a
critical state for its dynamic recovery to be fully activated. In the paper
by Abdel Karim and Ohno [6], an alternative kinematic hardening
model was proposed for simulating the steady-state in ratcheting
within the framework of the strain hardening and dynamic recovery
format. The model was formulated to have two kinds of dynamic
recovery terms, which operate at all times and only in a critical state,
respectively. The model is able of representing appropriately the
steady-state in ratcheting under multiaxial and uniaxial cyclic loading.
In [7], seven cyclic plasticity models for structural ratcheting response
simulations were analysed: bilinear (Prager), multilinear (Besseling),
Chaboche, Ohno–Wang, Abdel Karim–Ohno, modified Chaboche (Bari
and Hassan) and modified Ohno–Wang (Chen and Jiao). Apparently,
none of the models evaluated perform satisfactorily in simulating the
straight pipe diameter change and circumferential strain ratcheting
responses.
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In particular, many experimental and numerical studies on ratch-
eting induced by reversed bending in straight pipes and elbows have
been performed in the last years [1,8–10], and a detailed review can be
found in [1,10]. In [1], ratcheting studies were carried out on Type
304LN stainless steel straight pipes and elbows subjected to steady
internal pressure and cyclic bending load. Ratcheting behaviour of
straight pipes and elbows were compared and it was generally
inferred that ratcheting was more pronounced in straight pipes than
in elbows. Shariati et al. [8] investigated the softening and ratcheting
behaviours of SS316L cantilevered cylindrical shells under cyclic
bending load. Accumulation of the plastic strain or ratcheting phe-
nomenon occurred under force-control loading with nonzero mean
force. It was verified that an increase of the mean force induces an
increase in the accumulation of the plastic deformation and its rate.
Plastic mechanism analyses of circular tubular members under cyclic
loading were performed in [9]. This paper provides new methods of
analyses for circular hollow sections subjected to a constant amplitude
cyclic pure bending and a large axial compression–tension cycle. The
local buckling analysis was performed using a rigid plastic mechanism
analysis.

Although ratcheting based criteria for integrity assessment of pres-
surized piping under severe loading can be found in codes [11], so far
most constitutive models are unable to describe the complex non-
linear cyclic behaviour observed in this kind of problem. Besides, the
analysis of the stress and strain fields usually requires the use of
complex finite element codes, what can be a shortcoming for the
effective use of these theories by designers.

The present paper is concerned with the analysis of the coupled
effect of kinematic and isotropic hardening on the multiaxial ratchet-
ing behaviour of elasto-plastic thin-walled straight pipes under inter-
nal pressure and subjected to cyclic axial loading. An easily employable
framework to be used in the analysis of structures of this type with
complex material behaviour, as elasto-plasticity with both isotropic
and kinematic hardening, is presented. A simple and efficient algo-
rithm for approximating the solution is described.

Simulations of AISI 316L steel and AU4G aluminium alloy pressure
vessels at room temperature subjected to multiaxial loadings are pres-
ented and analysed. It is shown that cyclic behaviour is strongly
dependent on the kinematic hardening, but also on the isotropic
hardening. The main result of the paper is the proposition of a simple
condition (involving the ratio of the circumferential component of the
backstress tensor and the auxiliary variable related to the isotropic
hardening) to indicate when the pipe may exhibit a ratcheting beha-
viour, which leads to a progressive accumulation of deformation. Such
kind of criterion is independent of the evolution law adopted for the
backstresss tensor. Therefore, it is important to emphasize that the
paper is not focused on the evaluation of the physical adequacy of
different constitutive models for predicting ratcheting behaviour.
Although the Marquis–Chaboche elasto-plastic constitutive Eqs. (11)
and (12) have been considered in the present study, such a condition
for ratcheting to arise can be applied to any cyclic plasticity model
with both isotropic and kinematic hardening.

2. Summary of the elasto-plastic constitutive equations

The following set of elasto-plastic constitutive equations pro-
posed by Marquis [12] is adequate to model the cyclic inelastic
behaviour of metallic material at room temperature. A further dis-
cussion about these equations can be found in [13].

In the framework of small deformations and isothermal processes,
besides the stress tensor σ and the strain tensor ε , the following
auxiliary variables are also considered: the plastic strain tensor ε p, the
accumulated plastic strain p and two other auxiliary variables ðX ;YÞ,
respectively related to the kinematic hardening and to the isotropic
hardening. A complete set of elasto-plastic constitutive equations is

given by
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where E is the young modulus, ν the Poisson’s ratio and σy, v1, v2, a, b
are positive constants that characterize the plastic behaviour of the
material and they can be obtained from a simple tension-compression
test [14]. 1 is the identity tensor, and trðA Þ is the trace of an arbitrary
tensor A . S is the deviatoric stress given by

S ¼ σ � 1
3

� �
trðσ Þ1

� �
ð7Þ

J is the equivalent vonMises stress. X is an auxiliary variable related to
the kinematic hardening (eventually called the backstress tensor) and
it is introduced to account for the anisotropy introduced by the plastic
deformation. Y is an auxiliary variable related to the isotropic hard-
ening andmodels how the yield stress varies with plastic deformation.
p is usually called the accumulated plastic strain and _p can be interpr-
eted as a Lagrange multiplier associated to the constraint Fr0.
Function F characterizes the elasticity domain and the plastic yielding
surface. From Eq. (2) it is possible to affirm that

_p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_ε p U _ε p

r
ð8Þ

and, therefore,
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If F ¼ J�Yo0, it comes that JoY . Hence, from the condition
_pF ¼ 0 in (5), it is possible to conclude that _p¼ 0. If _pa0, from the
condition _pF ¼ 0 it also comes that, necessarily, F ¼ 0. Besides, from
Eqs. (2)–(4) it comes that, in this case, _ε pa , ̇a and _Ya0. Therefore,
the elasto-plastic material is characterized by an elastic domain in the
stress space where yielding doesn’t occur (_ε p ¼ ̇ ¼ ,_p¼ _Y ¼ 0 if Fo0).

Noting the eigenvalues of S and X , respectively by fS1; S2; S3g
and fX1;X2;X3g, the elastic domain can be represented in the space
of the principal directions of the deviatoric stress as a sphere
centred at the point fX1;X2;X3g with radius R¼

ffiffiffiffiffiffiffiffi
2=3

p
Y . Generally

the following initial conditions are used for a “virgin” material

pðt ¼ 0Þ ¼ 0; ε pðt ¼ 0Þ ¼ X ðt ¼ 0Þ ¼ ; Yðt ¼ 0Þ ¼ σy ð10Þ

From now on, the initial conditions (10) are assumed to hold in the
analysis. It is also important to remark that the constitutive equations
with conditions (10) and definition (7) imply that the principal direct-
ions the stress tensor, of the deviatoric stress tensor, of the plastic
strain tensor and of the backstress tensor are the same.
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