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a b s t r a c t

In the present investigation, an exact solution is proposed for the nonlinear forced vibration analysis of
nanobeams made of functionally graded materials (FGMs) subjected to thermal environment including the
effect of surface stress. The material properties of functionally graded (FG) nanobeams vary through the
thickness direction on the basis of a simple power law. The geometrically nonlinear beam model, taking into
account the surface stress effect, is developed by implementing the Gurtin–Murdoch elasticity theory together
with the classical Euler–Bernoulli beam theory and using a variational approach. Hamilton’s principle is
utilized to obtain the nonlinear governing partial differential equation and corresponding boundary
conditions. After that, the Galerkin technique is employed in order to convert the nonlinear partial differential
equation into a set of nonlinear ordinary differential equations. This new set is then solved analytically based
on the method of multiple scales which results in the frequency–response curves of FG nanobeams in the
presence of surface stress effect. It is revealed that by increasing the beam thickness, the surface stress effect
diminishes and the maximum amplitude of the stable response is shifted to the higher excitation frequencies.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the rapid technological developments in
nanoscience and engineering and the achievements in fabrication
and manufacturing bring us more and more nano- and micro-
electro-mechanical systems. Among these micro/nano structures,
nanobeams have been extensively used in many applications
of nano-sized devices and systems [1–6]. Moreover, the design of
nanobeam is dominated by various basic requirements. One of
these basic requirements is to achieve nonlinear dynamics proper-
ties to match the desired functionality.

The free vibration analysis of structural elements is a common
study as important as among all engineering problems and knowl-
edge of the natural frequencies suggests the designer avoid the
peak resonances which occur nearby the natural frequencies.
Furthermore, time-dependent external forces lead to forced vibra-
tion in dynamic systems and analyzing the response of structure
around resonance condition is necessary in this case.

To incorporate the quantum effects, that exist at nanoscale, into
classical continuum theory, the classical continuum needs to be

refined. Modified continuum models are one of the most applied
theoretical approaches for the investigation of nanomechanics due
to their computational efficiency and the capability to produce
accurate results which are comparable to the atomistic models
ones. As examples of using non-classical continuum mechanics in
forced vibration analysis of beam at small scales, Uymaz [7]
considered a forced vibration analysis of functionally graded
nanobeam based on the size-dependent nonlocal continuum
elasticity. Ghayesh et al. [8] investigated the nonlinear forced
vibration of microbeams employing the size-dependent strain
gradient continuum elasticity.

However, one of the most important size dependency of nanos-
tructures is the effect of surface stress which can be easily observed
at the atomic scale due to high surface to volume ratio, and this has
been clearly indicated and explained [9,10]. The main reason of the
phenomenon is related to the different environment conditions for
the atoms which their positions are near free surface compared to
ones at the bulk of the material. Therefore, in order to take surface
stress effect into account, the classical continuum theory needs to be
modified. For this purpose, Gurtin and Murdoch [11,12] developed a
theoretical concept on the basis of the continuum mechanics
including surface stress effects, in which a surface is regarded as a
mathematical deformable layer of zero thickness with different
material properties from the underlying bulk and completely
adhered to the underlying bulk material. Later, Lu et al. [13] improved
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Gurtin–Murdoch model by assuming linear variation through the
thickness of the normal stress inside and on the surface of bulk
substrate to satisfy the constitutive relations. Afterward, the pro-
posed improved model has been employed in different studies to
indicate the effect of surface stress on mechanical characteristics of
nanostructures.

For example, Wang and Feng [14] examined the effect of
surface stress on the nanosized contact problems and they con-
cluded that both of the indent depth and the maximum normal
contact stress depend strongly on the surface stress of nano-
indentation. The classical generalized shear deformable theory
was adopted to model the film bulk. Ricci and Ricciardi [15]
developed a new finite element approach to investigate the sur-
face stress effect on mechanical behaviors of microstructures using
the standard form of principle of virtual work. Ansari and Sahmani
[16] presented non-classical beam model models based on Gurtin–
Murdoch elasticity theory and different beam theories to analyze
bending and buckling behaviors of nanobeams including surface
stress effect. Ansari and Sahmani [17] studied the free vibration
response of nanoplates including surface stress effects based on
the continuum modeling approach. They implemented the Gur-
tin–Murdoch elasticity theory into the different types of plate
theory. Fu and Zhang [18] predicted the pull-in voltages of
electrically actuated nanobeams incorporating surface energies.
Ansari et al. [19] investigated the surface stress effect on the free
vibration response of circular nanoplates subjected to various edge
supports based on the Gurtin–Murdoch elasticity theory and first-
order shear deformation plate theory. Shaat et al. [20] investigated
the size-dependent bending behavior of ultra-thin functionally
graded (FG) Mindlin nanoplates by incorporating surface stress
effect into the conventional linear Mindlin plate theory. Also, the
effect of surface stresses on the bending of functionally graded
nano-scale films using finite element method based on the Mind-
lin plate theory is studied by Shaat et al. [21]. The size-dependent
the bending and resonance behavior of nanowires based on the
based on Timoshenko beam theory considering high-order surface
stress effects studied by Chiu and Chen [22]. Recently, Ansari et al.
[23,24] applied the Gurtin–Murdoch elasticity theory to Euler–
Bernoulli and Timoshenko beam theories, respectively, to predict
postbuckling behavior of nanobeams in the present of surface
stress effect. Also, Malekzadeh et al. [25] performed the nonlinear
free flexural vibration of skew nanoplates by considering the
influences of free surface energy and size effect.

In the present work, the main goal is to examine the effect of
surface stress on the nonlinear forced vibration characteristics of
nanobeams made of functionally graded materials (FGMs) sub-
jected to thermal environment. To this end, the Gurtin–Murdoch
continuum elasticity is used with the classical Euler–Bernoulli
beam theory to develop a non-classical beam model taking into
account the effect of surface stress. The method of multiple scales
in conjunction with the Galerkin technique is utilized to present
an exact solution for the nonlinear governing differential equation.

2. Theoretical formulations of a continuum beam model
incorporating surface effects

As depicted in Fig. 1, an FG nanobeam of length L and thickness
h that is made from a mixture of ceramics and metals is
considered. It is assumed that the materials at bottom surface
ðz ¼ � h=2Þ and top surface ðz ¼ h=2Þ of the microbeam are
metals and ceramics, respectively. The effective material proper-
ties of the FG nanobeam such as Young’s modulus ðEÞ, mass
density (ρ), Poisson’s ratio ðvÞ, thermal expansion coefficient ðαÞ,
thermal conductivity ðKÞ, surface Lame’s constants (λ s and μ s),
surface residual stress ðτsÞ, and surface mass density (ρs) can be

determined as following

E zð Þ ¼ Em�Ecð ÞVf zð ÞþEc; ρ zð Þ ¼ ρm�ρc
� �

Vf zð Þþρc; ν zð Þ
¼ νm�νcð ÞVf zð Þþνc;

α zð Þ ¼ αm�αcð ÞVf zð Þþαc; K zð Þ ¼ Km�Kcð ÞVf zð ÞþKc ð1aÞ

λs zð Þ ¼ λsm�λsc
� �

Vf zð Þþλsc; μs zð Þ ¼ μsm�μsc
� �

Vf zð Þþμsc;

τs zð Þ ¼ τsm�τsc
� �

Vf zð Þþτsc; ρs zð Þ ¼ ρsm�ρsc
� �

Vf zð Þþρsc ð1bÞ

The subscripts m and c denote metal and ceramic phases,
respectively. Various types of functions can be used to describe
the variation of the volume fraction of constituents. Here a simple
power law function is considered as following to describe the
volume fraction as below

Vf zð Þ ¼ 1
2
þ z
h

� �k

ð2Þ

where k is the volume fraction exponent.
Also, it is assumed that the ceramic-rich and metal-rich

surfaces have the temperature values of Tc and Tm, respectively.
The temperature distribution can be obtained by solving the
following heat conduction equation for the given boundary con-
ditions

K
d2T
dz2

¼ 0 ; T
h
2

� �
¼ Tm; T �h

2

� �
¼ Tc ð3Þ

Applying Eq. (3) along the beam thickness results in a linear
temperature distribution as follows

T ¼ TmþTc

2

� �
þðTm�TcÞ

z
h

ð4Þ

2.1. Kinematics and constitutive relations

On the basis of the Euler–Bernoulli beam theory, the displace-
ment field at any point (x; y,z) and at any time tcan be introduced
as

ux ¼U0 x; tð Þ�z
∂W x; tð Þ

∂x
; uy ¼ 0; uz ¼W x; tð Þ ð5Þ

in which U0 and Wstand for the displacement of neutral axis in x
direction and the lateral deflection, respectively.

By assuming small slopes in the beam after deformation, the
axial strain can be approximately given by the von-Karman strain
as

εxx ¼
∂U0

∂x
�z

∂2W
∂x2

þ1
2

∂W
∂x

� �2

¼ U0
0�zW″þ1

2
W 0� �2 ð6Þ

where the prime symbol refers to the derivative with respect to x.
The non-zero component of the Cauchy stress tensor can be

obtained as

σxx ¼ λþ2μð Þ U0
0�zW″þ1

2
W 0� �2� �

�βΔT ð7Þ

where λ¼ Eν= 1�ν2
� �

and μ¼ E= 2 1þνð Þð Þ are Lame constants, the
parameter β¼ αE= 1�νð Þ is the stress–temperature modulus and α
is thermal expansion coefficient and ΔT ¼ T� T0, where Tis the
temperature distribution through the FG beam and T0 is reference
temperature and the position of neutral line z0 can be obtained by
the following equation

z0 ¼
R
Az λ zð Þþ2μ zð Þð ÞdAR
A λ zð Þþ2μ zð Þð ÞdA ð8Þ
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