Thin-Walled Structures 98 (2016) 392-402

. . . . =
Contents lists available at ScienceDirect THIN-WALLED
STRUCTURES
Thin-Walled Structures
journal homepage: www.elsevier.com/locate/tws B e

Wavelet-based finite element method for multilevel local plate

analysis

—

\!} CrossMark

Mojtaba Aslami*, Pavel A. Akimov

Department of Applied Mathematics and Computer Sciences, Moscow State University of Civil Engineering, 26, Yaroslavskoe Sh., Moscow 129337, Russia

ARTICLE INFO

Article history:

Received 25 March 2015
Received in revised form

9 October 2015

Accepted 12 October 2015
Available online 24 October 2015

Keywords:

Finite element method
Discrete wavelet transform
Multilevel local plate analysis
Discrete Haar basis
Reduction algorithm

ABSTRACT

In this paper, an efficient multilevel method is presented for local static analysis of plates based on the
coupling of finite element method and discrete wavelet transform (FEM-DWT). The problem is dis-
cretized using finite element method and the corresponding governing equation is transformed into a
localized one by applying the discrete Haar wavelet. Then the obtained governing equation is reduced
using special averaging and reduction algorithms. Two types of the localization approach are used, the
first is localization with respect to nodes and it is rather efficient for plates with localized parameters
(such as concentrated loads or stress concentration). Another approach is the localization with respect to
the degrees of freedom of each node and it is rather efficient for the evaluation of the effect of the
degrees of freedom on the plate. The numerical results indicate that the proposed method provides
accurate results for the selected regions, with respect to corresponding FEM solution, with a considerable
reduction in the size of the problem. Moreover, in problems which itself have a localized properties, the
efficiency of the method is considerably increased.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Plates are initially flat structural members bounded by an edge or
boundary, which their thickness is small compared with other
characteristic dimensions of the faces (length, width, diameter, etc.)
[1]. The static or dynamic loads carried by plates are predominantly
perpendicular to the plate faces. The load-carrying action of a plate
is similar, to a certain extent, to that of beams or cables; thus, plates
can be approximated by a grid work of an infinite number of beams
or by a network of an infinite number of cables, depending on the
flexural rigidity of the structures. This two-dimensional structural
action of plates results in lighter structures, and therefore offers
numerous economic advantages. The flat plate develops shear for-
ces, bending and twisting moments to resist transverse loads. The
loads are generally carried in both directions and the twisting ri-
gidity in isotropic plates is quite significant, therefore, a plate is
considerably stiffer than a beam of comparable span and thickness.
Consequently, thin plates combine lightweight and a form efficiency
with high load-carrying capacity, economy, and technological ef-
fectiveness. Because of the distinct advantages discussed above, thin
plates are extensively used in all fields of engineering. Plates are
used in architectural structures, bridges, hydraulic structures,
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pavements, containers, airplanes, missiles, ships, instruments, ma-
chine parts, and other structural components [2-4]. One of the more
efficient method for the solution of the plate problems is the finite
element method (FEM) [5-12]. Finite element method has emerged
as a very efficient mathematical tool in engineering applications. The
static analysis of the problems by the FEM led to the formation of
resolving a system of linear algebraic equations (SLAE) with an im-
mense number of unknowns [13,14]. Generally, this is the most
time-consuming stage of the computing [15,16], especially if we take
into account the limitation in the power of the contemporary soft-
ware and in the performance of personal computers or even ad-
vanced supercomputers and the necessity to obtain correct and
accurate solution in a reasonable time. However, practically in many
cases it is unreasonable or impossible to obtain such solutions for
the entire structure and due to structural or loading conditions, the
location and approximate dimensions of critical and most vital for
designers regions of the structure can be determined. The stress—
strain state in these regions is of paramount importance from the
standpoint of analysis and design, and may lead to structural failure
or cause impairment in structural performance [17]. On the other
hand, many problems itself have localized properties or there is a
need for the obtaining the solution of especial zones of the plate and
the specified localization of the problem can be more efficient (by
considering of the computational efforts).

Local mesh refinement in the finite element method is one of
the approaches to obtaining accurate results in these critical zones.
In other words, find a mesh, which led to few degrees of freedom
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as possible with the controlled error in the corresponding finite
element solution. This method called the adaptive finite element
method [18,19], and aims at economical computation of arbitrary
quantities of physical interest by properly adapting the computa-
tional mesh [20]. Another method, which was proposed by Fish
et al. [21] is a multilevel finite element approach with a super-
position technique for improving the quality of numerical solu-
tions and mathematical models of a certain class of problems. This
method was presented as an attempt to construct a nearly optimal
discretization scheme and improve the quality of the solution
without changing the mesh size by superimposing a sequence of
overlapping finite element meshes on the portion(s) of the initial
finite element mesh. All of the above-mentioned methods, at-
tempted to reduce the computational works by obtaining an op-
timal mesh. Another multilevel approach for structural analysis,
which is applied after FEM discretization, is a coupling of solution
method with multilevel mathematical tools. Wavelet analysis is a
powerful computational-analytical tool for the decomposition and
multilevel mathematical modeling of functions and solution of
boundary value problems [22-26]. Wavelet has extraordinary
characteristics and combines the advantages of functional analysis
[27], Fourier transform [28], spline analysis [29], harmonic analysis
[30] and numerical analysis [31] as well, and can be successfully
employed for the considering goal. In this approach, after dis-
cretization and obtaining of governing equations, the considering
problem is transformed into a multilevel space by multilevel wa-
velet transform. In recent years, Akimov et al. [32-37] have de-
veloped this multilevel analysis approach by combining so-called
discrete-continual finite element method (DCFEM) [38] and dis-
crete wavelet transform (DWT) [39]. This method is applicable for
structures, which have constant, piecewise constant or in general
regular physical and geometrical parameters along one of the co-
ordinate’s directions (so-called “basic” direction). In addition, for
the solution of the simplest problem of local static analysis of
Bernoulli Beam on elastic foundations [40,41] authors used finite
difference method [42] and discrete wavelet transform and ob-
tained local accurate results.

This paper is devoted to local analysis of plates, which is pro-
vided by coupling of FEM and DWT. Corresponding so-called FEM-
DWT method reduces the size of the problem also provide the
accurate results in selected regions simultaneously. This is a rather
efficient approach for evaluation of local phenomenon such as
stress concentration or concentrated force. FEM-DWT solution
provides the qualitative and quantitative assessments of the de-
gree of localization of various kinds of design factors and the
evaluation of the effect of each degree of freedom on the behavior
of the plate. The efficiency of the computational complexity
(number of operations) of the proposed method can be evaluated
by the comparison of unreduced (n) and reduced (n,) total number
of degrees of freedom of the structure. Let, Neomp = om® and
Neomp = 0(n?) are the approximate computational complexity of
the FEM and FEM-DWT (without the considering of bandwidth of
the stiffness matrix), respectively. Then, the comparative reduction
in the number of the iteration can be approximated by n’/n?. The
paper is organized as follows. In the next section, the general finite
element formulation of the problem and theoretical basis of the
transition to wavelet basis is presented. The transition of the
problem into Haar wavelet basis is described, in details, in Section
3. Theoretical basis of reduction in size of wavelet representation
is presented in Section 4. Various types of localization process are
described in Section 5. Subsequently, the efficiency, accuracy and
validity of the proposed method are demonstrated by several
numerical examples in Section 6. Finally, some concluding remarks
are presented.

2. Formulation of the problem and theoretical basis of the
transition to wavelet basis

Consider the boundary value problem described by the fol-
lowing equation

Li=F 1)

where L is the operator of the boundary value problem formulated
by taking into account the boundary conditions in the framework
of the standard (extended) area proposed by Zolotov [43]; i is the
unknowns vector and F is the given vector of right hand side of the
problem. Then the Formulation (1) corresponds to the below en-
ergy functional:

& @) = 0.5-(Li, @) — (F, &) @)

which is the stationary point of those, is the solution of (1). In the
Eq. (2) the (f, &) is the scalar product of the functions f and g [44].

Let the following form as a finite element method approx-
imation of the problem:

Kty = f; 3)

where K is the finite element analog of the original operator of the
continuum formulation (1) or the stiffness matrix of the problem,
il = [Uty... Uy | is the discrete (approximated) unknowns vector,
f, = lfifp-. f, ' is the discrete (approximated) given vector of right
hand side of the problem and n is the dimension of the discrete
problem (number of the degrees of freedom of the problem). Using
the functional (2) and the finite element approximation (3), the
transition from the original unit basis to the Haar basis is as fol-
lowing:

D (itn) = 0.5-(Kilp, tn) — (f, Un)
= 0.5-(KQVn, Q¥) — (f,, Qvn) = 0.5-(Q*KQy, V) — (Qf,, V), 4)

B(Vn) = 0.5:(QKQVy, 7n) — (Q,0 V) )

where Q is a unnormalized transition matrix comprising Haar
basis vectors [45], v, is the vector of discrete Haar basis coefficients
as follows:

Uy = Qvn (6)

The problem can be rewritten with respect to a new unknown
¥, in the following form:

Rv,=F; K=QKQ; F=qf, @

3. Discrete Haar wavelet

Due to the high efficiency of the localization process, the sim-
plicity of the computational algorithm and its computer realiza-
tion, the discrete Haar wavelet basis is used and corresponding
direct and inverse algorithms of transformations are performed
[39,46]. In the Haar wavelet, the basis functions are constructed by
simple step functions and therefore have more computationl ef-
ficiency in the impelementation process.

3.1. Two-dimensional discrete Haar wavelet

Let f(xi, X;) is an arbitrary two-dimensional function in region
w={X,%):0<x<h0<x <L} (Fig. 1). Where x, x, are co-
ordinates; L, I, are dimensions along x;, x,. Then by dividing » to
(n — 1) part along x and x, (where n = 2™ is a number of discrete
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