Contents lists available at ScienceDirect

Mechanical behavior of circular and square concrete filled steel tube stub columns under local compression

THIN-WALLED STRUCTURES

Fa-xing Ding^a, Jing Liu^{a,*}, Xue-mei Liu^b, Zhi-wu Yu^{a,c}, Da-wen Li^a

^a School of Civil Engineering, Central South University, Changsha, Hunan Province 410075, PR China

^b School of Civil Engineering and Built Environment, Queensland University of Technology, Brisbane, QLD 4001, Australia

^c National Engineering Laboratory for High Speed Railway Construction, Changsha 410075, PR China

ARTICLE INFO

Article history: Received 23 December 2014 Received in revised form 2 April 2015 Accepted 14 April 2015 Available online 14 May 2015

Keywords: Concrete filled steel tube Local compression Finite element Ultimate bearing capacity

1. Introduction

Concrete filled steel tubular (CFT) columns have been increasingly used in bridges and high-rise buildings. They have much more advantages compared with the ordinary steel or concrete system including higher strength and stiffness, higher ductility, and larger energy absorption capacity [1]. With the benefits of CFT, the use of CFT columns is becoming more popular and the performance of concrete filled steel tubes has caught more and more research attentions [1–9]. In most cases, such as the pier of bridges and arch structures, CFT columns are subjected to axially compression loads. Limited research has been carried out to investigate the behavior of CFT stub columns under local compression and the influential factors on the load bearing capacity. Forty three circular CFT stub columns under local compression were experimentally studied by Cai et al. [1]. Effects of local compression area ratio, diameterthickness ratio, relative height of the model and spiral stirrup on the performance and the load bearing capacity were studied. Formula for the ultimate load bearing capacity of CFT stub columns was also proposed. Han et al. [2,3] also conducted experiments to investigate the effects of parameters including section type and local compression area ratio, on the structural behavior of CFT stub columns and proposed a series of formulas for the local compression bearing capacity of CFT stub columns.

The previous study from reference [1–3] indicated that the CFT columns generally perform well, however, little success has been

* Corresponding author. E-mail address: liujing001@csu.edu.cn (J. Liu).

http://dx.doi.org/10.1016/j.tws.2015.04.020 0263-8231/© 2015 Elsevier Ltd. All rights reserved.

ABSTRACT

This paper presents a combined experimental and numerical study on the behavior of both circular and square concrete-filled steel tube (CFT) stub columns under local compression. Twelve circular and eight square CFT stub columns were tested to study their bearing capacity and the key influential parameters. A 3D finite element model was established for simulation and parametric study to investigate the structural behavior of the stub columns. The numerical results agreed well with the experimental results. In addition, analytical formulas were proposed to calculate the load bearing capacity of CFT stub columns under local compression. © 2015 Elsevier Ltd. All rights reserved.

achieved so far in developing a concise formula of the load bearing capacity for CFT stub columns. Moreover, the behavior of CFT columns under local compression condition has not been well addressed in the current design code and hence further research is necessary to improve the design code specifications. In addition, the effects of loading plate shape on the performance of CFT stub columns also need to be investigated.

The aim of this study, therefore, is to develop a more concise and precise method to compute the load bearing capacity of CFT stub columns when subjected to local axially compression. More specifically, four objectives are included in the study: (1) to analyze the structural behavior of both circular and square CFT stub columns subjected to local compression with 12 circular CFT specimens and 8 square CFT specimens without endplate tested; (2) to develop finite element (FE) model using ABAQUS program to simulate the behavior of the CFT stub columns; (3) to analyze the effects of local compression area ratio, steel ratio, strength of steel and concrete on the behavior of locally loaded CFT specimens; (4) to establish a simplified approach to estimate the load bearing capacity of CFT stub columns subjected to local compression, and to verify formula with both experimental and numerical results.

2. Experimental study

2.1. Test materials and specimens

Twenty CFT specimens were included in this study, including 12 circular and 8 square specimens. The nominal dimension of the

Nomenclature		$N_{\rm b}$	ultimate load-bearing capacity of locally loaded circ		
			lar CFT stub columns		
A_{c}	cross-sectional area of concrete	$N_{\rm b,e}$	ultimate load-bearing capacity of locally loaded circu-		
As	cross-sectional area of steel tube		lar CFT stub columns from experimental results		
A _{sc}	cross-sectional area of specimen	$N_{\rm b,FE}$	ultimate load-bearing capacity of locally loaded circu-		
$A_{\rm cb}$	area of local compress concrete		lar CFT stub columns from FE results		
В	outside width of the square section	$N_{\rm b,f}$	ultimate load-bearing capacity of locally loaded square		
b	width of loading plate		CFT stub columns from formulation		
D	outside diameter of circular steel tube	$N_{\rm u}$	axial ultimate bearing capacity		
d	diameter of loading plate	Φ	Confinement index		
DI	ductility index	$arDelta_{85\%}$	axial deformation when the load falls to 85% of the		
Ec	concrete modulus of elasticity		ultimate bearing capacity.		
Es	steel modulus of elasticity	$\varDelta_{ m b}$	axial deformation at the ultimate strength of CFT stub		
$E_{\rm st}$	strengthening modulus of steel		columns subjected to local compression		
f_{cu}	concrete compressive cube strength	vs	Poisson's ratio of steel		
$f_{\rm c}$	uniaxial compressive strength of concrete	vc	Poisson's ratio of concrete		
f_{y}	yield strength of steel	\mathcal{E}_{L}	axial strain of steel		
L	length of the specimens	$\mathcal{E}_{\theta,s}$	circumferential strain of steel		
SI	strength index	ε_{i}	equivalent strain of steel		
t	wall thickness of steel tube	ε_{y}	yield strain of steel		
Κ	confinement coefficient	$\varepsilon_{\rm st}$	hardening strain of steel		
K _b	influence coefficient of the CFT stub columns local	\mathcal{E}_{u}	ultimate strain of steel		
	compression bearing capacity	ρ	area ratio of steel tube to concrete		
Ν	axial load	β	local compression area ratio		

circular specimen was $300(D) \text{ mm} \times 4(t) \text{ mm} \times 900(L) \text{ mm}$, where *D* is the diameter of the circular section, *t* is the wall thickness of the steel tube, and *L* is the length of the specimen. The nominal dimension of the square specimen was $300(B) \text{ mm} \times 4(t) \text{ mm} \times 900(L) \text{ mm}$, where *B* is the width of the square section. *d* is the diameter of loading plate, *b* is the width of loading plate. More detailed geometric properties and characteristics of the specimens are presented in Table 1.

In this paper, local compression area ratio is defined as $\beta = A_{cb}/A_{sc}$, where A_{sc} is the cross sectional area of specimen, and A_{cb} is the area subjected to local compressive load. f_y means the yield strength of steel and f_{cu} represents the concrete compressive strength. The main factors considered in the study included concrete strength and local compression area ratio. The steel tubes were molded by bending Q235 steel plates. Butt welds were used according to the

standard GB 50017-2003 [10] and the ends of the steel grooves (as the sites of welding) were kept smooth after welding.

For the convenience of observation and record of deformation and failure model of the specimen, red paint was sprayed on the external surface of the steel tube and 50 mm × 50 mm white grids were plotted on the surface. A cover plate was initially welded to cover the bottom end of the steel tube before concrete pouring. Concrete was then pumped into the tube from the top and was vibrated to be well compacted and the concrete surface was leveled before finishing. Meanwhile standard concrete cubes with a dimension of 150 mm × 150 mm × 150 mm and prisms with a dimension of 100 mm × 100 mm × 300 mm were prepared and cured at the same condition as those of CFT specimens. Grade C30 and C50 commercial concretes were used in this study and the mix design is given in Table 2.

Table 1

Geometric properties and characteristics of steel tubes specifiens.

No.	Section type	Specimen label	$B(D) \times t \times L/$ mm	b(d)/mm	$f_{\rm y}/$ MPa	$f_{\rm cu}/$ MPa	β	$N_{\rm b,e}/~{\rm kN}$	N _{b,FE} / kN	$N_{\rm b,f}/~{\rm kN}$
1 2 3 4 5 6 7 8 9 10 11 12	Square	CLST1-A CLST1-B CLST2-A CLST2-B C1-A C1-B CLST3-A CLST3-A CLST3-B CLST4-A CLST4-B CLST4-B C2-A (2-B	$\begin{array}{c} 300\times 3.72\times 900\\ 300\times 3.76\times 900\\ 300\times 3.70\times 900\\ 300\times 3.68\times 900\\ 300\times 3.70\times 900\\ 300\times 3.70\times 900\\ 300\times 3.71\times 900\\ 300\times 3.69\times 900\\ 300\times 3.76\times 900\\ 300\times 3.77\times 900\\ 300\times 3.74\times 900\\ 300\times 900\times 900\\ 300\times 900\times 900\\ 300\times 900\times 900\\ 300\times 900\times 900\times 900\\ 300\times 900\times 900\times 900\\ 300\times 900\times 900\times 900$	100 100 200 300 300 100 100 200 200 300 300	311 311 311 311 311 311 311 311 311 311	35.5 35.5 35.5 35.5 35.5 54.4 54.4 54.4	0.11 0.11 0.44 0.44 1.00 1.00 0.11 0.11	1880 1900 3310 3200 3780 3540 2090 2090 3810 3950 4896 4976	1630 1638 2758 2750 3757 3763 2189 2205 3656 3683 5146 5025	1908 1922 2856 2848 3625 3630 2255 2281 3620 3651 4977 4851
13 14 15 16 17 18 19 20	Circular	SLST1-A SLST1-B SLST2 S1 SLST3-A SLST3-B SLST4 S2	$\begin{array}{c} 300 \times 3.68 \times 900\\ 300 \times 3.68 \times 900\\ 300 \times 3.70 \times 900\\ 300 \times 3.75 \times 900\\ 300 \times 3.72 \times 900\\ 300 \times 3.72 \times 900\\ 300 \times 3.72 \times 900\\ 300 \times 3.70 \times 900\\ \end{array}$	100 100 200 300 100 100 200 300	311 311 311 311 311 311 311 311 311 311	35.5 35.5 35.5 35.5 54.4 54.4 54.4 54.4	0.11 0.11 0.44 1.00 0.11 0.11 0.44 1.00	1140 950 2420 4370 1340 1280 3100 5570	882 882 2324 4060 1312 1312 3265 5555	994 994 2400 3985 1467 1467 3359 5443

Download English Version:

https://daneshyari.com/en/article/308522

Download Persian Version:

https://daneshyari.com/article/308522

Daneshyari.com