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a b s t r a c t

A relaxation method is applied to estimate and predict a critical set of parameters responsible for
stability loss (buckling) of spherical circle axially symmetric shells. The buckling phenomenon under
static loading was investigated by solving the Cauchy problem for a set of ordinary differential equations
and the Hausdorff metrics was applied while quantifying the data obtained within the novel approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

One of the key issues in the field of materials strength and
structural mechanics is that devoted to the study of stability as
well as buckling and postbuckling behavior of structural members
such as beams, plates, shells and thin-walled structures. These
members of structures and the structures themselves are usually
subjected either to static or dynamic, or both types of loading, and
hence various computational techniques, including numerical,
analytical and combined numerical–analytical approaches are
used to analyze various types of stability loss including local,
global (flexural, torsional, lateral, distorsional and their combina-
tions) and interactive forms of buckling.

It is well known that the mentioned either isolated or coupled
structural members have found wide applications in numerous
constructions in aerospace, civil engineering, ship building, auto-
mobiles, aircraft wings and fuselages, and others. There are
numerous papers/monographs devoted to stability loss (and
buckling) investigation of structural members treated as isolated
or interacting objects, where the structural members are linked
with each other by different/mixed boundary conditions. It is well
recognized that stability loss is understood as the transition of a
mechanical system from one to another equilibrium configuration

either in a smooth way (bifurcation point) or by a sudden jump
from a stable to unstable equilibrium path (limit point).

In general, there are either static or dynamic loads. The latter
ones are measured via “pulse intensity” and “pulse velocity”.
Depending on their length in time, different dynamic loading
phenomena can be distinguished. Namely, when pulse duration is
short (long) and the amplitude is relatively high (average) then an
impact (quasi-static) behavior is observed. In the case when the
pulse duration is close to the period of natural vibrations, a
dynamic buckling takes place.

It should be emphasized that a finite duration load may have
different shapes (parabolic, triangular, rectangular, exponential or even
irregular), since it attempts to model real dynamic load met in nature
and engineering applications. Studies on the stability and buckling
behavior of mainly thin-walled structures date back to over a hundred
years, and were motivated by Bernoulli/Euler [1], Timoshenko [2] and
Volmir [3,4]. Here, our studies are limited to only a few proposals
regarding stability phenomena, but the reader may find more infor-
mation for instance in the recent monograph of Kubiak [5].

Growing interest in stability loss/buckling/postbuckling beha-
vior of thin-walled structures measured by the publication of a
number of papers/books began in the 1970s (see for instance
[6–12]). In particular, a lot of research was aimed at non-linear
problems of stability of orthotropic and anisotropic thin-walled
structures. The studies covered orthotropic plate buckling [13],
critical stresses of anisotropic laminated plates [14], buckling of
composite and anisotropic plates [15–17], stability of columns
and square laminate plates [18] and postbuckling behavior of
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orthotropic laminated plates [19]. Numerous papers have been
devoted to the solution of stability problem using numerical and
analytical–numerical methods often applying commercial pro-
grams based on the finite elements method (FEM). However,
despite the mentioned research aiming at the explanation of the
static/dynamic stability loss of thin-walled structures and struc-
tural members, there is no a general stability definition/criterion
formulated which can be validated experimentally and can satisfy
engineering requirements regarding the load carrying capacity as
well as stability of the mentioned mechanical objects. Below, a few
of stability loss criteria regarding continuous mechanical objects
which found considerable resonance among researchers are
briefly illustrated and discussed.

Volmir [4] proposed a time-consuming though simple app-
roach to determine the critical load while investigating dyn-
amics of a simply supported rectangular plate subjected to pulses
of infinite/finite durations and of rectangular/exponential shapes.
He pointed out that the plate subjected to pulse load lost its
stability, when the maximum deflection of the plate was equal to
the assumed constant value (usually, it was either the plate
thickness or the half-plate thickness). Budiansky and Hutchinson
[20,21] and Budiansky and Roth [22] proposed displacement
criteria regarding cylindrical shells axially loaded rods and cylind-
rical shells loaded transversally, respectively. There are two
equivalent formulations of their criteria: 1) structures subjected
to pulse loading lose their stability when an unlimited increase of
their deflection for small load increments is observed; 2) a plate
exhibits dynamic stability loss when its maximum deflection
grows rapidly under a small load amplitude variation.

Both theoretical and experimental investigations of thin plates
clamped on all contours and subjected to pulse load with a half-
wave of sine shape carried out by Ari-Gur and Simonetta [23]
yielded other four dynamic criteria. Only two of them are recalled
(the other two deal with failures): 1) dynamic buckling takes place
when a small increase of the loading pulse intensity causes a
significant increase of the deflection value; 2) dynamic buckling
takes place when a small increase of the pulse loading amplitude
causes a decrease of the deflection value.

The so far discussed stability loss criteria concern isolated
structural members like beams, columns, plates and shells. In
complex structures composed of the linked simple structural
members the problem is more difficult. One buckling mode may
simply create other modes, and then a problem of multi-modal
modes stability appears. Petry and Fahlbusch [24] extended the
Budiansky–Hutchinson criterion to plated structures, and they
proposed the following dynamic buckling criterion: Dynamic
response of a structure subjected to pulse load is dynamically stable
if the condition that the equivalent stress (originally the authors
used the Huber–Mises hypothesis) less/equal to the assumed limit of
stress is satisfied at any time and any point of the structure.

In addition to the presented status of existing criteria of the
structural members stability loss, a few papers from the Russian
literature are referred to. Kulikov [25] studied the stability of a
spherical shell putting emphasis on numerical techniques applied
to study non-linear behavior of thin elastic shells. Numerous
algorithms of the FDM (Finite Difference Method) devoted to the
solution of stability problems of mechanical structures allow
researchers to solve a large class of static and dynamic problems.
Valishvili [26] solved the static problem, where the non-linear
boundary value problem was reduced to that of solving non-linear
algebraic equations. In addition, static problems of structural
membranes can be solved with the help of a relaxation method
first applied by Feodos'ev for shells [27].

The so far given review of papers devoted to stability/buckling
problems of structural members shows that there are numerous
approaches to define and predict this phenomenon. However, it is

also clear that none of them is sufficient and meets expectations of
the engineering community. In general, models of the processes
associated with stability loss of mechanical structures require
derivation of complex variational equations or equivalent differ-
ential equations. Additionally, in spite of a large number of
algorithms devoted to the computation of various kinds of stability
loss and in spite of the used characteristics such as graphical
stability loss visualization versus the applied load, there is no
relatively simple and reliable estimation of stability loss pictures
being validated by various laboratory experiments.

The aim of this paper is to get reliable characteristics of time
evolution of the development of shell deformation versus the
applied load variation in order to detect the critical load values. For
this purpose the following problems are solved: (i) to estimate the
deformation velocity while changing an input load; (ii) to get
information on rapid changes of the deformation velocity devel-
opment in order to reach a certain critical load level; (iii) to get
information on the absolute and relative error introduced by the
linear approximating function while changing the initial input. It
should be emphasized the static problems are solved by using the
dynamic method which is much more efficient in comparison to
the standard static approaches.

The paper is organized in the following manner. In Section 2
both the method and algorithm of computation of an axially
symmetric spherical shell are presented. Section 3 deals with a
static stability loss of shells. A core of the paper is in Section 4
devoted to the application of modified Chebyshev's method used
to quantify the velocity characteristics of shell deflection. In
particular, an important theorem is formulated. Section 5 presents
computational experiments validating the previous theoretical
considerations. Concluding remarks sum up the research carried
out and the novel results obtained.

2. Method and algorithm of computation

Consider a shallow spherical axially symmetrical shell
described by the 2D space in R2 in the polar co-ordinates
introduced in the following way: Ω¼ ðr; zÞj rA ½0; b�; �H=2r

�
zrH=2g:

Dynamics of the mentioned axially symmetric shells is gov-
erned by the following set of PDEs:
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where Ф¼ ∂F=∂r and F stands for the stress (Airy's) function.
While investigating theoretically real shells, usually a 3D problem
of the theory of elasticity is reduced to that of 2D assuming that
the shell material is elastic and satisfies Hook's law and that the
Kirchhoff–Love hypothesis is validated (normals to the middle
shell surface are not deformed with shell deformation).

System (2.1) is recast into its counterpart dimensionless form by
introducing the following relations:
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where t – time, ε – damping coefficient, F – stress function,
w – displacement function, R – main shell curvature radius,
2c – length of ends of the shell curvature (see Fig. 1), H¼2h – shell
thickness (see Fig. 1), b – shallow parameter, ν – Poisson's coefficient,
r– distance between the axis of rotation and a point of the middle
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