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a b s t r a c t

This paper discusses aspects related to the mechanics underlying the distortion of thin-walled members
with symmetric and periodic open cross-section, such as those commonly employed in cold-formed
steel construction. The Generalised Beam Theory (GBT) framework is employed to determine the cross-
section distortional deformation modes and obtain insight into the problem under consideration.
Besides reviewing the well known case of reflectional symmetry, the implications of rotational
symmetry and periodicity through translation or glide reflection are examined. For each case,
computationally efficient procedures to obtain the distortional modes are provided. Several examples
are presented throughout the paper, in order to enable a better grasp of the concepts and procedures
addressed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the structural analysis of symmetric systems
may be based on substructure simplifications, a procedure which
leads to a significant DOF reduction and, perhaps most importantly,
helps understanding the structural behaviour of the complete system.
The latter aspect is particularly important in the case of thin-walled
members, where substructure simplifications may help grasping the
mechanics of cross-section in-plane and out-of-plane (warping) defo-
rmation. In fact, thin-walled members invariably exhibit cross-section
symmetry, a feature that renders them an ideal candidate for this type
of approach.

It is also well known that cross-section distortion — a deformation
mode type involving cross-section in-plane and out-of-plane (warp-
ing) deformation, with displacements of the cross-section fold-lines —
plays a major role in the structural behaviour of thin-walled members.
For instance, this mode type has been a subject of intensive investiga-
tion in the field of cold-formed steel member stability, namely for
lipped channel, zed, hat or “rack” sections (see, e.g., [chapter 13 in 1]).
In this respect, the Generalised Beam Theory (GBT, see [2,3]) has been
established as a very efficient and clarifying tool, due to its capabilities
of straightforwardly including/eliminating specific effects. In particu-
lar, GBToften leads to analytical or semi-analytical solutions that make
it possible to extract unique and in-depth information concerning the
member structural behaviour.

In the context of GBT, the classic reflectional symmetry simpli-
fication procedure is described in [2] and has been employed in
the past in numerical applications (e.g., [4,5]) and also in the
derivation of analytical formulae for the distortion of zed, lipped
channel and hat sections [2,3,6]. Recently, the rotational symmetry
of regular convex polygonal tubes was explored to obtain insight
into their first-order, buckling and vibration behaviours [7–10].

This paper explores the implications of cross-section symmetry
and periodicity on the characteristics of the distortional deformation
modes of thin-walled members with open cross-section, using a GBT-
based approach. Besides reviewing the well known case of cross-
section reflectional symmetry, the implications of rotational symmetry
and periodicity (through either translation or glide reflection along a
straight line) are discussed and computationally efficient procedures
for computing the distortional modes are provided for each case. The
outline of the paper is as follows. Section 2 presents a brief review of
the GBT procedure for calculating the distortional deformation modes
of open sections (either branched or unbranched). Sections 3 and 4
are devoted to the reflectional and rotational symmetry cases,
respectively, and Section 5 focuses on finite and infinite periodic
cross-sections. The paper then closes in Section 6, with the concluding
remarks.

2. GBT distortional modes for open sections

A notation similar to that of previous papers is followed (e.g.,
[4,11]), with matrices in boldface uppercase letters and vectors in
boldface lowercase letters. Furthermore, (x,y,z) are midsurface
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local axes at each wall, shown in Fig. 1(a), the comma indicates
differentiations (e.g., f ;x ¼ ∂f =∂x) and superscripts M and B desig-
nate membrane and bending terms, respectively.

The displacement components of the wall mid-surface (z¼0)
are given by

uðx; yÞ ¼
XD
k ¼ 1

ukðyÞϕk;xðxÞ; ð1Þ

vðx; yÞ ¼
XD
k ¼ 1

vkðyÞϕkðxÞ; ð2Þ

wðx; yÞ ¼
XD
k ¼ 1

wkðyÞϕkðxÞ; ð3Þ

where D is the number of deformation modes, ukðyÞ, vkðyÞ, wkðyÞ
are the deformation mode displacement components along x, y, z,
respectively, and ϕkðxÞ are their amplitude functions along the
beam length (the problem unknowns). The displacement compo-
nents for za0 are obtained from the mid-surface ones, using
Kirchhoff's thin plate assumption.

The GBT deformation modes are obtained by analysing the cross-
section as a plane frame, whose DOFs correspond to the displace-
ments of (see Fig. 1(b)): (i) “natural” nodes, user-independent and
automatically located at wall mid-line intersections and free edges,
and (ii) “intermediate” nodes, user-dependent and arbitrarily posi-
tioned between the natural nodes, in order to achieve a given
discretisation level. Since the distortional modes are determined from
the displacements of the natural nodes only, no intermediate nodes
are considered in this paper.

For thin-walled open sections, following the classic GBT app-
roach [2], it is generally acceptable to assume null membrane
shear strains and null membrane transverse extensions, leading to

γMxy ¼ 0 ) uk;y ¼ �vk; ð4Þ

εMyy ¼ 0 ) vk ¼ constant in each wall; ð5Þ

for each mode k¼ 1;…;D, and therefore uk must be linear in each
wall. Thewk functions are obtained by analysing the cross-section as a
plane frame, subjected to imposed vk displacements, and it follows
from Eq. (4) that the deformation modes associated with warping
displacements of the natural nodes are univocally defined by the
warping functions uk. These modes are designated as “Vlasov natural
modes” and include the classic “rigid-body” modes (axial extension,
major and minor axis bending and torsion) plus distortional modes.
For open sections without branches, the number of warping functions
equals the number of natural nodes, whereas with branches not all
nodes may undergo independent warping displacements, due to the
wall connectivity (see, e.g., [12]). A general procedure for identifying
the independent nodes is given in [4] and an initial set of Vlasov
modes is simply obtained by imposing unit warping displacements at

each one, separately, and calculating the associated vk and wk fun-
ctions.

In order to obtain the distortional deformation modes, it is first
necessary to examine the homogeneous form of the GBT equation
system, which is given by

Cϕ;xxxx�Dϕ;xxþBϕ¼ 0; ð6Þ
where vector ϕ groups the amplitude functions. For the natural
Vlasov modes, the so-called GBT modal matrices are symmetric and
given by

Bik ¼
Z
S
Dfwi;yywk;yy dy; ð7Þ

Cik ¼
Z
S
EtuiukþDfwiwk
� �

dy; ð8Þ

Dik ¼
Z
S

Gt3

3
wi;ywk;y�νDf ðwi;yywkþwk;yywiÞ

 !
dy; ð9Þ

where Df ¼ Et3=ð12ð1�ν2ÞÞ, S denotes the cross-section mid-line
(along y), t is the wall thickness and the material parameters E, G, ν
are Young's modulus, shear modulus and Poisson's ratio, respectively.
The distortional modes are the eigenvectors associated with the non-
null eigenvalues of

ðB�λCÞv¼ 0; ð10Þ
where C concerns membrane and bending warping displacements
and is positive definite, whereas B concerns transverse curvatures and
is positive semi-definite with a nullspace associated with the cross-
section rigid-body modes.

The eigenvalue problem defined by Eq. (10) constitutes a key step
in the calculation of the distortional modes and it is to be expected
that (at least) some features of the resulting modes may be predicted
by simple inspection of the matrices involved. In particular, properties
associated with geometric symmetry/periodicity may be extracted.
However, to achieve far-reaching conclusions, it is essential to devise a
cross-section discretisation that reflects the geometrical features, i.e.,
the node numbering must mimic the relevant geometrical features, as
discussed in the following sections.

One final word to recall that, concerning the natural Vlasov modes
for open sections with n independent natural nodes, the num-
ber of distortional deformation modes equals n�4.1

3. Reflectional symmetry

Open cross-sections exhibiting symmetry with respect to reflection
are common, e.g., standard I and lipped channel sections. For this well
known symmetry type, the deformation mode shapes can be

Fig. 1. (a) Thin-walled member local coordinate systems. (b) GBT cross-section discretisation for an arbitrary open cross-section.

1 For branched sections, n¼ nnodes�Nwþ2, where nnodes is the number of
natural nodes and Nw is the number of free end nodes [11].
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