

Contents lists available at ScienceDirect

Thin-Walled Structures

Axial strengthening of thin-walled concrete-filled-steel-tube columns by circular steel jackets

THIN-WALLED STRUCTURES

M.H. Lai^a, J.C.M. Ho^{b,*}

^a Department of Civil Engineering, The University of Hong Kong, Hong Kong ^b School of Civil Engineering, The University of Queensland, QLD 4072, Australia

ARTICLE INFO

Article history: Received 16 February 2015 Received in revised form 3 July 2015 Accepted 1 September 2015 Available online 14 September 2015

Keywords: Concrete-filled-steel-tube Modelling Steel jackets Strengthening Thin-walled structure

ABSTRACT

External confinement in the form of steel rings, tie bars, spirals and FRP wraps has been widely adopted for strengthening concrete-filled-steel-tube (CFST) columns. Previous experimental and theoretical studies have proved that it can improve the strength, elastic stiffness, ductility and interface bonding of CFST columns. However, in real engineering practise, CFST columns need to be strengthened are usually under pre-compressed axial load. The stress-lagging effect between the CFST columns and external confinement due to pre-loading has not yet been justified. In this paper, external confinement in the form of circular steel jacket is proposed to improve the uni-axial behaviour of CFST columns with and without pre-compressed axial load. An experimental study, consisting of 5 hollow-steel-tubes and 10 thin-walled CFST columns was conducted to examine the effectiveness of the proposed strengthening scheme. The main parameters were the concrete cylinder strength, jacket spacing and pre-compressed axial load level. Test results revealed that the steel jacket could improve the uni-axial behaviour of CFST columns and the stress-lagging could degrade this beneficial effect. In addition, a theoretical model developed by the authors previously was adopted to predict the uni-axial behaviour of the strengthening columns. Very good agreement has been obtained between the theoretical and experimental results.

1. Introduction

Concrete-filled-steel-tube (CFST) column, which consists of a hollow-steel-tube (HST) column filled with concrete, is widely adopted in many structures nowadays attributed to the superior behaviour by the composite action [1–4]. However, during the initial elastic stage under compression, due to the different dilation properties between steel tube and concrete [5,6], the corresponding confining stress may become negative (i.e. hoop compressive stress). This will reduce the strength, elastic stiffness and ductility of CFST columns [7,8]. On the other hand, degradation of confining stress, strength and ductility would occur in the postelastic stage owing to the inelastic outward buckling of steel tube. To overcome the deficiencies and fully utilise the composite action of CFST columns, various approaches were proposed, which included internal stiffeners [9,10], tie bars [7], spirals [11], rings [5,8] and FRP wraps [12,13]. A brief review of these approaches has been conducted by the authors [11] and it has been concluded that among these approaches, external confinement in the form of steel rings proposed by the authors [5,8,14] is one of the best methods to improve the uni-axial behaviour of CFST columns.

However, the installation of external rings requires welding onto steel tube, which increases the surface imperfections, making the steel tube more sensitive to local buckling and the welding of rings is difficult if the tube wall is thin (diameter-to-thickness ratio over 100). Besides, none of the previous research studies have investigated the effects of pre-existing loads on stress-lagging effect between the original CFST column and the external confinement, although it was reported by Su and Wang [15] that preloading would degrade the effectiveness of strengthening scheme on the reinforced concrete (RC) columns seriously. (The stresslagging effect in CFST columns is referring to the slower development of confining stress with pre-load condition.) Thus, to address the above shortcomings, a simple and novel approach, using circular steel jacket is proposed in this paper. In this approach, circular steel jacket in the form of screw clamp, which consists of a stainless steel band and a pressed screw thread pattern, is installed at different spacing against the steel tube. Fig. 1 shows that the steel band contains a captive screw at one end. When the screw is turned clockwise, the band will tighten against the external surface of the steel tube and vice versa. Thus, a perfect contact between the steel jackets and the steel tube can be produced.

^{*} Corresponding author. E-mail addresses: lmh58743@hku.hk (M.H. Lai), johnny.ho@uq.edu.au (J.C.M. Ho).

List of notations

ε_{cc}	Strain corresponding to confined peak concrete	f_{rE}	Confi
	strength	f_{rS}	Confi
\mathcal{E}_{co}	Strain corresponding to unconfined peak concrete	F_c	Axial
	strength	F_s	Axial
$\mathcal{E}_{s\theta}$	Hoop strain of the steel tube	F_t	Axial
\mathcal{E}_{sr}	Radial strain of the steel tube	G	Shear
ε_{ssE}	Hoop strain of external confinement	Н	Heigh
\mathcal{E}_{SZ}	Axial strain of the steel tube	HSC	High-
σ_E	Stress provided by external confinement (steel jacket)	HSCFST	High-
$\sigma_{s\theta}$	Hoop stress provided by the steel tube	HST	Hollo
σ_{sr}	Radial stress provided by the steel tube	Ι	Incre
σ_{sut}	Ultimate tensile stress of the steel tube	Κ	Bulk
σ_{ssE}	Yield stress of external confinement (steel jacket)	LS	Paran
σ_{sv}	Uni-axial yield stress of the steel tube		confi
$\sigma_{sv,b}$	Elastic buckling stress of steel tube	LVDT	Linea
σ_{svc}	Compressive yield stress of the steel tube	т	Paran
σ_{svt}	Tensile yield stress of the steel tube	п	Numl
σ_{sz}	Axial stress of the steel tube	N _{cal}	Maxi
ν_s	Poisson's ratio of steel tube	N _{exp}	Maxi
ω	Hardening parameter	N _{exp-c}	Maxii
A_c	Contact concrete area		speci
As	Contact steel area	N _{exp-u}	Maxi
CFST	Concrete-filled-steel tube		speci
d	Nominal width of the steel jacket	NSC	Norm
D_o	Outer diameter of the steel tubes	NSCFST	Norm
E_c	Elastic modulus of concrete	S	Centr
E_s	Elastic modulus of steel tubes	S_{θ}	Devia
E_{ssE}	Elastic modulus of external confinement (steel jacket)	S_r	Devia
$f_{c'}$	Unconfined concrete cylinder strength	S_z	Devia
fcc	Confined concrete stress	t	Thick
fccn	Confined peak concrete stress	t _{sj}	Nomi
5 CCP	•	-	

Fig. 1. Details of steel jackets.

In this paper, a total of 5 HST and 10 thin-walled CFST columns were fabricated and tested under uni-axial compression (All with diameter-to-thickness ratio over 100). The main parameters were the concrete cylinder strength, jacket spacing and pre-compressed axial load level. From the experiment, it can be concluded that the proposed circular steel jacket is effective in improving the strength and ductility of the HST and CFST columns. The stress-lagging effect between the original CFST columns and the new jackets degrades this improvement slightly. Finally, a theoretical model previously developed by the authors [16] based on: (1) an accurate

hoop strain Eq.; (2) an actively confined concrete model by Attard and Setunge [17]; (3) a comprehensive steel model by Prandtl– Reuss theory; (4) Interaction of core concrete, steel tube and external confinement has been adopted to predict the uni-axial behaviour of the tested specimens. For the unconfined and confined CFST columns without any pre-compressed loads, this model can be used directly; Otherwise, this model needs minor modification (i.e. the steel jackets would be effective only after the pre-compressed axial load). The validity of the proposed model is verified by comparing with the test results in this paper.

2. Experimental Program

2.1. Specimens

A total of 5 HST and 10 thin-walled CFST columns were fabricated and tested under uni-axial compressive load. Material properties of the specimens are tabulated in Tables 1 and 2. For the CFST columns, specimens were divided into two groups depending on the concrete cylinder strength, f_c ': (1) 5 CFST columns with f_c of 30 MPa; (2) 5 CFST columns with f_c of 80 MPa. Each group consisted of one unconfined CFST columns and four confined CFST columns. The nominal outer diameter and thickness of all the specimens were 114.3 mm and 1 mm, resulting in diameter-tothickness ratio over 100. The measured outer diameter (D_o) and thickness (t) of steel tube were summarised in Table 1. To reduce the end effects and minimise the slenderness ratio [11,18,19], the specimens were fabricated to be exactly 350 mm in height (H), Download English Version:

https://daneshyari.com/en/article/308590

Download Persian Version:

https://daneshyari.com/article/308590

Daneshyari.com