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a b s t r a c t

The present paper focuses on the constitutive assumptions, both for the isotropic and orthotropic cases,
and consistency in the framework of the Generalized Beam Theory. In particular, a novel approach based
on energetic arguments, able to automatically select appropriate constitutive relations in accordance
with the GBT kinematics, is presented. Furthermore, the concept of consistency of a GBT-based model is
established and a consistency analysis is presented. This yields a formal rational basis to investigate the
effects of the various families of cross-section deformation modes in terms of predictive capabilities of
the GBT model. Some numerical examples illustrate the arguments exposed in the paper.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thanks to their high stiffness and reduced self-weight, thin-
walled beams are nowadays used in a broad variety of applications
ranging form aeronautical to civil engineering. Due to the in-plane
cross-section deformability and their complex warping behaviour,
classical beam theories cannot be in general deemed valid and
three-dimensional shell models or enriched beam models must be
adopted for their analysis.

Moving from the well-known theory developed by Vlasov [1], a
large amount of theoretical work has been proposed in the literature
aiming at defining mono-dimensional formulations which are able
to reproduce the complex three-dimensional behaviour of thin-
walled beams. In particular, Capurso [2–4] extended the Vlasov
theory by enriching the warping description while keeping null in-
plane deformation of the cross-section. Such an approach has been
later further developed by many authors, introducing the concept of
generalized warping functions and taking into account also the in-
plane cross-section deformability (some recent examples can be
found in [5,6]). In this respect, the Generalized Beam Theory (GBT),
originally proposed by Schardt [7,8] in the 1980s, has been proven to
be able to account for cross-section distortion along with the more
“classical” kinematics of axial displacement, bending and torsional
rotation in a comprehensive fashion.

Following the work of Schardt, many authors have contributed to
the improvement of the GBT by extending it beyond its original
formulation for open unbranched sections [9–12], by adding geometric
and material nonlinear effects [13–18], by developing beam elements

based on semi-analytical solutions [19], or by presenting new
approaches for the selection of the cross-section modes [20–22].
Moreover, an interesting application of the GBT to analyse cold-
formed roof systems has been presented in [23], and an effective
equilibrium-based procedure for the reconstruction of the three-
dimensional stresses in GBT members has been proposed in [24]. In
the GBT literature, much attention has also been devoted to the shear
deformability [13,25–27]. In particular, a new formulation of the GBT
that coherently accounts for the shear deformation has been recently
presented in [27] and its relationship with classical and non-classical
beam theories has been discussed in [28].

Independent of the specific variant, the fundamental idea of the
GBT remains to assume the displacement field of the beam to be a
linear combination of predefined cross-section deformation modes
(which are selected beforehand) multiplied by unknown functions
dependent on the beam axial coordinate, called generalized dis-
placements. In this sense, the GBT model can be viewed as a one-
dimensional model deduced from a parent three-dimensional one
by the introduction a kinematic ansatz.

Of course, depending on the kinematic ansatz, this can lead to a
poor (or even null) representation of the three-dimensional strain
components over the cross-section (i.e. in the co-dimension of the
model) and, in turn, to an over-stiffening which limits the predictive
capabilities of the beam model. Such behaviour has been well
documented by Silva et al. in various papers, see [16,29,30]. In
particular, in [16], it has been shown that the buckling load in some
cases can be dramatically overestimated (up to 300%), by using
improperly derived GBT finite elements. Indeed, this is a typical
problem of structural models with constrained kinematics and it is
usually dealt with by properly adjusting the constitutive relationship.
A remarkable example of this strategy is represented by shear
correction factors usually employed in Timoshenko beams and in
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shear-deformable plate models. In the case of non-standard beam
models, such an approach leads to some drawbacks. In particular, the
value of such coefficients depends on the stress distribution on the
cross-section so that, on one side, their value is problem dependent
and, on the other, it might change from section to section.

Also in GBT based models the problem is tackled by modifying
the constitutive relations, by adopting a different treatment for the
membrane part of the strain field (pertaining to the cross-section
midline) and for the bending one (outside the cross-section mid-
line). Moreover, in this respect, it should be noticed that in the GBT
literature, this different treatment is carried out in a non-univocal
way for isotropic and orthotropic beams. As it can be easily argued,
the arbitrary adoption of two different constitutive relations for
the membrane and the bending parts is not desirable. In fact, this
way of proceeding on one side does not give a clear insight on the
physical meaning of such an approach and, on the other side, it
might lead to non-univocal choices if the displacement field is
enriched or laminated beams considered.

In order to overcome these difficulties, an approach able to
automatically identify constitutive relations consistent with the ado-
pted kinematic hypotheses is presented in this paper (Section 3). In
the proposed approach, constitutive relations are obtained via comp-
lementary energy and there is no distinction between membrane
and bending parts, nor isotropic and orthotropic materials.

Indeed, the different treatment of the membrane and bending
parts, as well as the alternative approach presented in the paper,
suffices to overcome the over-stiffening problems in the case of
isotropic material, but does not in that of orthotropic material. In this
case, in fact, due to the coupling introduced by the constitutive
relationship it is necessary to ensure the coherence between the
representations over the cross-section of the stress and strain com-
ponents which, through energetic equivalence, contribute to the
definition of the cross-section stiffness matrix. Here, this idea is
formalized in a rigorous analysis by means of the concept of
consistency. This concept was early introduced by Prathap and his
co-workers (see [31] and the references therein) with regard to the
assumed displacement finite element model in constrained media
elasticity. They showed that consistency offers a conceptual scheme to
delineate some well-known deficiencies of the assumed displacement
approach and suggests the way to construct variationally correct
procedures to overcome these shortcomings [32,33]. Later, the same
concept was successfully extended to coupled problems [34–36] and
used as formal basis to develop an integrated procedure to recover
consistent stresses for displacement based finite elements [37].

In the present paper, the concept of consistency of a GBTmodel is
established and a consistency analysis is proposed (Section 4). The
consistency analysis yields a formal rational basis to investigate the
effects of the various families of cross-section deformation modes in
terms of predictive capabilities of the GBT model. Based on this, the
effect of a certain deformation-mode family when the material, the
cross-section geometry or the load is changed, can be not only
explained but also anticipated a priori. Some numerical examples
illustrate the arguments exposed in the paper (Section 5).

2. Generalized beam theory

In this section, the shear-deformable GBT recently proposed in
[28] is briefly summarized.

2.1. Kinematics and statics

The displacement field of the beam is assumed to be a linear
combination of predefined cross-section deformation modes mul-
tiplied by generalized displacements that depend on the beam
axial coordinate. Such operation is essentially a variable separation

which allows us to map a fully three-dimensional behaviour into
its components in the section plane and their distributions in the
axial direction. Thus, the following displacement field, d, for the
generic i-th wall of the cross-section is assumed (see Fig. 1):

d¼Uu; ð1Þ
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where dn, ds and dz are the displacement orthogonal to the wall
midline, tangent to the wall midline and in the beam axial direction,
respectively, while ψ , ξ and ω are row matrices collecting the assu-
med cross-section deformation modes (depending only on s and n),
and v and w are vectors that collect the unknown kinematic para-
meters (depending only on z). Moreover, cross-section deformation
modes ξ and ω are assumed to depend linearly on n in the form

ξðs;nÞ ¼ μðsÞ�nψ
○ ðsÞ; ωðs;nÞ ¼ ϕðsÞ�nψðsÞ; ð3Þ

where μ and ϕ are predefined shape functions. Hereinafter, ðÞ
○
and ðÞ0

denote the derivatives with respect to the s and z coordinates,
respectively.

From the above displacement field, it is possible to calculate
strains by means of the three-dimensional compatibility equations,
yielding εnn ¼ γsn ¼ 0 and

ε¼ Ee ð4Þ
where

ε¼

εzz

εss

γzs
γzn

2
66664

3
77775; E¼

0 ϕ�nψ 0 0

μ
○�nψ

○○
0 0 0

0 0 μþϕ
○
�2nϕ

○
1
2 μ�ϕ

○
� �

0 0 0 ψ

2
6666664

3
7777775
; ð5Þ

and e is the vector collecting independent z-fields governing the
strain components, denoted as generalized deformation parameters:

eT ¼ vT w0T 1
2 ðv0 þwÞT ðv0 �wÞT

h i
: ð6Þ

For later convenience, the strain field presented in Eq. (4) is
split into a membrane part, not depending on n and denoted by λ,
and a bending part, depending on n and denoted by χ , leading to

ε¼ λþnχ ; ð7Þ
where

λ¼
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Fig. 1. Thin-walled cross section.
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