
Frequency analysis of the nonlinear viscoelastic plates subjected
to subsonic flow and external loads

Davood Younesian n, Hamed Norouzi
Center of Excellence in Railway Transportation, School of Railway Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran

a r t i c l e i n f o

Article history:
Received 24 October 2014
Received in revised form
30 January 2015
Accepted 1 February 2015
Available online 17 March 2015

Keywords:
Von-Kàrmàn plate
Galerkin's approach
Bernoulli's principal
Potential Theory
Multiple Scales method

a b s t r a c t

Frequency analysis of the nonlinear viscoelastic plates subjected to the subsonic fluid flow and external
loads is presented in this paper. Von-Kàrmàn plate assumptions have been applied and the governing
equation of motion of the plate has been derived considering Kelvin's structural damping model. Nono-
dimensional forms of the governing equations are derived and the Galerkin's approach is employed to
discretize the continuous system. Using Bernoulli's principal, the pressure distribution formula is
obtained to model the fluid flow affecting the plate. Multiple Scales method has been used to solve the
nonlinear equation of motion. Frequency response curves, time history responses and state space graphs
have been obtained for the non-resonance, primary resonance, super-harmonic resonance and sub-
harmonic resonance cases. Stability of the solutions has been analyzed and in a parametric study, effects
of different parameters on the frequency responses have been studied.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Plates and shells are widely used as structural members in all
over the engineering world. Among all the applications of the
plates, their employment in car bodies, high-speed train and
airplane structures, make it necessary to analyze the performance
of the plates in the fluid flow fields.

Abe et al. [1] used Multiple Scales approach to investigate the
sub-harmonic resonance of the simply supported rectangular lami-
nated plates. They used Hamilton's principle to derive the governing
equations of motion and applied Galerkin's approach to the equation
to obtain Duffing-type nonlinear equation in terms of the transverse
displacement. Flow-induced vibrations and hydro-elastic instabil-
ities of rectangular parallel-plate assemblies were studied by Gou
and Paidoussis [2]. They employed the extended Galerkin method
and Fourier transform technique to solve the plate equation and the
perturbation pressure from the potential flow equations respec-
tively. Gou and Paidoussis [3] also analyzed theoretically the linear
stability of rectangular plates with free edges in an inviscid channel
flow. They employed energy balance analysis to show how different
types of instability arise for plates with different supports. The
nonlinear aero-elastic behavior of functionally graded plates in
supersonic flow was studied by Haddadpour et al. [4]. They used

von-Kàrmàn theory in conjunction with the piston theory to model
structural nonlinearity and quasi-steady aerodynamic panel loading,
respectively. They founded that the use of functionally graded mat-
erials significantly changes the flutter behavior of the plate particu-
larly in post-flutter region.

Korbahti and Uzal [5] introduced an analytical solution for the
eigenfrequencies of the oscillations of an orthotropic plate placed
in a rigid channel of rectangular cross section subjected to fluid
flows. They found that, for the most part in case of a composite
plate within a duct, the minimum velocity at which the unstable
oscillations will occur increases by the employing the strengthen-
ing fibers perpendicular to flow direction. Hao et al. [6] performed
an analysis on the nonlinear dynamics of a simply supported
rectangular plate with functionally graded material (FGMs) sub-
jected to the transverse and in-plane excitations in a thermal
environment. Bifurcation and chaotic motion of a thin circular
functionally graded plate in thermal environment was studied by
Yuda and Zhiqiang [7]. They investigated effects of geometric
nonlinearity and temperature-dependent material properties.

Li et al. [8] used Melnikov's method to investigate chaotic behavior
of a two dimensional thin panel in subsonic flow. Li et al. [9] also
investigated nonlinear dynamical behavior of a two dimensional thin
panel with an external excitation and subjected to subsonic flow.
They considered the nonlinear cubic stiffness and viscous damper in
the middle of the panel and used Potential Theory and Galerkin's
method to obtain governing equation of motion. Li et al. [10] studied
dynamic behavior of panels exposed to subsonic flow and subjected
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to external excitation based on the von-Kàrmàn's large deflection
equations of motion. Their results showed that the panel loses its
stability by divergence in subsonic flow and the number of the fixed
points and their stabilities change after the dynamic pressure exceeds
a critical value. Bifurcation phenomena and scaling properties of a
subsonic periodically driven panel with geometric nonlinearity was
analyzed by Li et al. [11]. Sort of interesting scaling properties of the
bifurcation structure were discussed by them theoretically based on
the linear approximation in terms of a discrete mapping. They
showed a good agreement between proposed approximate analytical
method and the numerically found scaling properties. Tang et al. [12]
studied chaos control in a two dimensional panel in the subsonic flow
with geometric nonlinearity using Melnikov's function technique.
They performed a satisfactory suppression by adding a parametric
excitation term into the chaotic system. Yao and Li [13] investigated
the bifurcation and chaotic motion of a two-dimensional composite
laminated plate with geometric nonlinearity subjected to incompres-
sible subsonic flow and transverse harmonic excitation. Their results
showed that the critical divergence velocity of the laminated plate
decreases with the increasing ply angle. Stochastic analysis of a
nonlinear panel in subsonic flow with random pressure fluctuations
was conducted by Li et al. [14]. They showed that a bifurcation of
fixed points occurs under a specific condition and the bifurcation
point is determined as functions of noise spectral density, dynamic
pressure, and the panel structure parameters. Sadri and Younesian
[15] examined nonlinear free vibration of a plate-cavity system using
Galerkin's method and Harmonic Balance approach. They carried out
a parametric study on the system and investigated the effects of
different parameters on the value of nonlinear natural frequency.
Geometrically non-linear vibrations of a thin infinitely long rectan-
gular plate subjected to axial flow and concentrated harmonic exci-
tation were investigated by Tubaldi et al. [16] for different flow
velocities. They showed their results through bifurcation diagrams of
the static solutions, frequency-response curves, time histories, and
phase-plane diagrams. Li and Yang [17] studied the non-linear dyna-
mical behavior of a cantilevered plate with motion constraints in
subsonic flow. They examined the complex non-linear behavior in the
region of dynamical instability employing numerical simulations.
The region of dynamical instability was divided into four sub-reg-
ions by them based on different types of plate motion. Their results
showed that symmetric and asymmetric limit cycle motions would
occur after dynamical instability. Symmetric and asymmetric period-3
and period-6 motions were observed along with chaotic motions.

Surveying the literature shows that studies have been more
focused on finite–infinite types of plate structures. For such an
assumption, due to invariance of the geometry and the loading, all
the derivatives in transversal direction are vanished. The objective in
this paper is to extend the solutions for nonlinear dynamic behavior
of definite–definite plates subjected to subsonic flows. Frequency
responses are extracted for different resonance conditions including
non-resonance, primary resonance, super-harmonic resonance and
sub-harmonic resonance circumstances.

2. Mathematical modeling

2.1. Equation of motion of the plate

Fig. 1 illustrates schematic representation of a simply sup-
ported plate that is subjected to a subsonic fluid flow and external
excitation f(x,y,t) simultaneously. The dimensions of the plate and
used coordinates have been demonstrated in Fig. 1.

Equation of motion of the plate based on the von-Kármán ass-
umptions and using theory of elasticity can be derived and showed

in the form [18,19]
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In this equation a, b, h and w, are the length, width, thickness
and transverse displacement of the plate respectively. Also E, D, ν,
c and ρ, are modulus of elasticity, rigidity, Poisson's ratio, viscous
damping and mass density of the plate respectively, and one can
write ∇4 ¼ ðð∂2=∂x2Þþð∂2=∂y2ÞÞ2 and D¼ ðEh3=12ð1�ϑ2ÞÞ. In the
above equation, P and f represent external pressure distribution
and other distributed forces separately, and one can add P to f to
obtain total external distributed force. Moreover, F is called the
potential function and can be found as
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in which Nx and Ny are the normal forces per unit length in the x
and y directions respectively, and Nxy is shear force per unit length.
Based on the strain–displacement relations, one can write Nx, Ny

and Nxy as [20]
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where, u and v are in-plane displacements and are equal zero
according to von-Kármán theory. Based on this assumptions and
after substituting Eq. (3) into Eq. (2) and then substituting the
result into Eq. (1) the equation of motion of the plate can be
obtained explicitly in the form
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where, dots (.) denote the derivative with respect to t, and gs is the
structural damping coefficient. For the modeling of the viscoelasticity
effects of the plate material, one can replace E-Eð1þgsð∂=∂tÞÞ [10].
Moreover, the external excitation f(x,y,t) can be assumed as a harmonic
function in the from f x; y; tð Þ ¼ sin ðπx=aÞ sin ðπy=bÞ cos ωt.

Fig. 1. Schematic representation of the plate subjected to subsonic flow and
external excitation.
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