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a b s t r a c t

Typical methods of analysis and modelling of measured geometric imperfections make use of the Fourier
transform to represent the imperfections as summations of sinusoids. The reconstruction of the im-
perfection usually consists of only a few harmonics, chosen with half-wavelengths equal to the half-
wavelengths of the critical elastic buckling modes. This modelling of geometric imperfections is well
suited for slender prismatic structures which buckle elastically and for which the buckling modes are
harmonic in the longitudinal direction. However, when buckling occurs inelastically, buckling de-
formations are frequently confined to a relatively small part of the structure and associated with the
formation of a spatial plastic mechanism. For this case, the accurate reconstruction of localised im-
perfections using sinusoids requires the summation of a wide range of frequencies. Further, the Fourier
transform cannot explicitly give information on the positioning of localised components. This paper
explores the application of the wavelet transform to the analysis and modelling of localised geometric
imperfections. Seeing the similarity between various wavelets and the longitudinal variation of typical
inelastic buckles, wavelet transforms are expected to be more suitable for modelling the geometric
imperfections of non-slender thin-walled structures than the Fourier transform. The theory of the wa-
velet transform is briefly covered including methods by which practical issues that arise in evaluating the
transform, and reconstructing the analysed imperfection, may be resolved. Three imperfection schemes
are developed and compared to numerical models incorporating detailed longitudinal and transverse
geometric imperfection measurements. These schemes represent the pertinent imperfection compo-
nents via Fourier series, via wavelet frames, and via a few empirically selected wavelets. The scheme
utilising wavelet frames produces excellent results, as does that utilising Fourier series, although it re-
quires a great number of component wavelets due to their finite length. As such, it is worth noting that,
in addition to those covered herein, many more methods of reconstruction utilising wavelets are pos-
sible.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Local buckling arises as an instability phenomenon due to the
thinness of the component plates comprising the walls of a
member. Thin-walled members are generally prismatic and their
local buckling behaviour is associated with a number of regular
buckles longitudinally; i.e. elastic local buckling. However, buck-
ling does not occur elastically for all such members, and for a plate
element whose critical buckling stress is close to the yield stress of
its material, local buckling occurs via the formation of a single
buckle in a localised region along the member length. Further, as
the local buckling stress enters the inelastic range, the buckling

half-wavelength decreases to be less than that of the critical elastic
local buckling mode, which is typically of the order of the width of
the constituent plate elements [1]. This has been observed in tests
on members in compression and bending [2–4] and has a theo-
retical basis in a modified flow theory [5].

Due to the localised nature of inelastic local buckling, the
buckling behaviour is most sensitive to localised imperfections.
The sensitivity to such imperfections is particularly pronounced
where the buckling stress and yield stress coincide [6]. As such, it
is necessary to develop a method by which such imperfections
may be accurately assessed and modelled. Many methods for
modelling imperfections revolve around use of the Fourier trans-
form, e.g. [7,8]. However, since localised imperfection components
are often characterised by abrupt changes in the imperfection
surface, such characteristics often lead to errors in reconstruction
using Fourier series, particularly if higher frequency components
are neglected.
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In light of this, a transform that is capable of extracting loca-
lised geometric imperfection components may prove useful. Such
a transform is the wavelet transform, which provides an analysis
with varying resolution and has applications in a wide range of
fields [9]. Previously, the wavelet transform has been utilised in
multi-scale characterisation of engineered surfaces [10] and geo-
metric imperfection analysis [11], and wavelets themselves have
been utilised to directly generate sample imperfections [12], but
the wavelet transform itself has not been utilised for such direct
modelling of geometric imperfections. This paper will briefly in-
troduce the continuous wavelet transform, methods of re-
constructing a signal from its wavelet transform, and the Mexican
hat wavelet, including characteristics of the wavelet transform
utilising this wavelet. It will further outline detailed geometric
imperfection measurements and subsequent stub columns tests
carried out on 200�200�6 square hollow sections (SHS), and
detail numerical modelling of the stub columns, including meth-
ods for modelling localised geometric imperfections. A number of
the functions used herein are available in Wavelet Toolbox in
MATLAB [13]. A number of the figures contained herein were also
produced using MATLAB.

2. The wavelet transform

2.1. The continuous wavelet transform

Consider a wavelet xψ ( ), which is a function with a mean of
zero and finite energy; i.e.,
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From this wavelet, which is often referred to as a mother wa-
velet, a set of wavelets may be generated by dilating and trans-
lating the mother wavelet as per Eq. (3),
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The effect of the scale a is to dilate the wavelet, whereas the
effect of the translation b is to translate the wavelet along the
analysed direction x. The horizontal distance between any two
points of a wavelet, which may be considered a measure of the
‘width’ of the wavelet, is linearly proportional to the wavelet's
scale; i.e. scale and frequency (how rapidly the wavelet oscillates)
are inversely proportional. Note that the scale is not necessarily
unitless, but rather has the same dimension as the analysed signal
(e.g. length or duration). The factor a1/ in Eq. (3) is an energy
normalisation factor, such that all wavelets generated from the
same mother wavelet will have the same energy (E) as defined by
Eq. (2). The wavelet of scale one and translation zero is identical to
the mother wavelet.

Using the notation of Eq. (3), the continuous wavelet transform
of a signal f x( ) (such as an imperfection data line) is defined as,

W a b f x x dx f f b b, , 4a,b,ca b a b a, , ,0∫ ψ ψ ψ( ) = ( ) ( ) ≡ ≡ ( )⁎ (− ) ( )−∞

∞

where the bar denotes complex conjugation. The wavelet
transform may be interpreted as a series of inner products, as in
Eq. (4b), between the analysed signal and the set of dilated and
translated wavelets. Thus, it provides a measure of ‘fit’ between
the imperfection and the wavelet at different wavelet scales and
different translations of the wavelet along the imperfection. The
transform may also be written as a convolution as per Eq. (4c) [14].

To satisfy Eq. (2), a wavelet must either be non-zero on a finite
interval or decay to zero as x → ∓ ∞. As such, wavelets behave
like window functions in that they isolate a portion of a signal for

analysis; the whole signal is then covered by translating the wa-
velet over the signal. This is similar to the use of window functions
in the short-time Fourier transform; however, as the wavelet
width varies with the scale, the size of the wavelet-window varies
during the analysis. Due to this, the wavelet transform provides
excellent spatial resolution at high frequencies and excellent fre-
quency resolution at low frequencies. How this is achieved is
elucidated in Appendix A for the continuous wavelet transform
utilising a particular wavelet, known as the Mexican hat wavelet,
which is introduced in Section 2.3.

2.2. The discrete wavelet transform [15]

The scales and translations considered in evaluating the wa-
velet transform need not be continuous. Consider discretisation of
the scales and translations of the wavelet transform such that
a a m

0= and b nb a m
0 0= , where a041, b040, and m and n are in-

dices for the discretised scales and translations respectively, with
m n, ∈ . This discretisation restricts the analysis to positive

scales. The wavelets corresponding to this discretisation are,
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The discrete wavelet transform is then exactly as defined in
Eqs. (4a–c) for the continuous wavelet transform, but with xa b,ψ ( )
replaced by xm n,ψ ( ). As the only difference between the two
transforms is the discretisation of the scales and translations, the
discrete wavelet transform is equivalent to sampling the con-
tinuous wavelet transform on a space-frequency (or time-fre-
quency) lattice, such as that shown in Fig. 1, which is constructed
for a 20 = . The coordinates shown are the corresponding m n,( ) for
that point.

At m 0= (corresponding to a 1= ), every wavelet has a centre
frequency 0ω ; the sinusoid of this frequency is the ‘best fit’ sinusoid
to the wavelet. (Determining the centre frequency is briefly out-
lined in Section 3.2). As frequency and scale are inversely related,
the difference in angular frequency ω between two adjacent points
in the frequency direction is,
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As such, at large scales (i.e. large m), which correspond to low
frequencies, the analysed points are closely spaced in the fre-
quency direction, and so the discrete wavelet transform provides
good frequency resolution at low frequencies, similar to the con-
tinuous wavelet transform. In the translation direction, the dif-
ference in translation between two adjacent points is,
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As such, at small scales (i.e. small m), which correspond to high

Fig. 1. Time–frequency lattice for the discrete wavelet transform [15].
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