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a b s t r a c t

The exact differential equations for the axisymmetric bending of elliptic toroidal shells are difficult to
solve. In this paper, and by considering a semi-elliptic toroid, we present an approximate bending so-
lution that is valid in regions adjacent to the horizontal equatorial plane. The formulation accurately
simulates edge effects which may arise from loading and geometric discontinuities located in the
equatorial plane of elliptic toroids. In particular, the developed closed-form results provide a very ef-
fective means for evaluating the state of stress in the relatively narrow zones experiencing mid-side local
effects in complete elliptic toroidal vessels subjected to hydrostatic loading, and for calculating the de-
formed shape of the shell midsurface.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The membrane theory of shells is a greatly simplified yet very
effective basis for estimating stresses and deformations in those
regions of the shell over which the loading and geometry do not
change too rapidly. However, and as is well-known, the theory
becomes inadequate at or in the vicinity of supports, concentrated
loadings, shell junctions or discontinuities in shell geometry
(thickness, slope, radii of curvature), loading and material prop-
erties. Novozhilov [1] has called these locations “lines of distor-
tion” in reference to the existence of a bending effect locally dis-
turbing the membrane state of stress in these regions. Dis-
continuity problems in shells of revolution have been the subject
of many investigations, and a good body of closed-form results
exists for the more common types of shells and loading conditions
[2–5].

The performance of containment shells is usually assessed with
regard to their stress and deformation response in the linear
elastic range [2,3], their vibration characteristics and dynamic re-
sponse, as well as their nonlinear buckling and postbuckling be-
haviour within the elastic and plastic ranges of material behaviour.
Metal shells are particularly susceptible to buckling on account of
their thin-ness (radius-to-thickness ratios typically in excess of
500). Numerical studies have been carried out on the buckling
capacity of vertical cylindrical steel tanks [6–11], horizontal

cylindrical and near-cylindrical vessels [12–14] and conical tanks
[15–17]. The buckling capacity of multi-segmented shells under
external water pressurisation has also been investigated [18], as
has the elastic buckling of certain unusual mathematical forms for
shells [19,20].

Junction stresses in various shell assemblies and multi-seg-
mented vessels have been the subject of intensive studies over the
past 15 years [21–25]. Mechanics phenomena around shell inter-
sections and at shell-branching locations have also been of interest
[26,27]. The presence of ring beams at shell junctions has a con-
siderable influence on the behaviour of the shell; some efforts
have also been directed towards understanding ring–shell inter-
actions [28,29]. A more comprehensive review of recent studies on
the statics, dynamics and stability of various types of liquid-con-
tainment shells under a variety of loading conditions may be seen
in a recent survey [30].

Toroidal shells have mostly been studied with pressure-vessel
applications in mind, though liquid-containment applications have
also been of interest. The classical solutions for pressurised circular
and elliptical toroids may be seen in texts on linear shell analysis
[2–5]. Even where toroidal shells with uniform geometry are
subjected to internal pressure only, the membrane solution be-
comes inadequate in the vicinity of the horizontal circles furthest
from the equatorial plane, owing to the vanishing of the curvature
in one of the principal planes [31].

Sutcliffe [32] tackled the stress analysis of both circular and
elliptical toroidal shells subjected to internal pressure. While ac-
curate for the purpose, the formulation is somewhat cumbersome
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for practical implementation. Galletly [33] considered the elastic
buckling of an elliptic toroidal shell subjected to uniform internal
pressure, and confirmed that internally pressurised elliptical tor-
oids, unlike circular toroids, may possibly buckle, depending on
the axes ratio of the elliptical cross-section. The study was also
extended to plastic buckling [34], for which the post-buckling
behaviour of the shell was noted to be stable.

Redekop [35] studied the buckling behaviour of an orthotropic
toroidal shell of elliptical cross-section, while Yamada et al. [36]
considered the free vibration response of a toroidal shell of elliptic
section. Xu and Redekop [37] also considered the free vibration of
elliptic toroidal shells, but with orthotropic properties. Zhan and
Redekop [38] studied toroidal tanks with cross-sections made up
of combinations of circular arcs of different radii (ovaloid shape),
and observed the vibration, buckling and collapse behaviour of
this type of toroidal vessel.

In this paper, we will focus attention on the thin elliptic tor-
oidal shell. Noting the lack of a convenient analytical solution for
the axisymmetric bending of an elliptic toroidal shell, we aim at
developing a practical means for estimating bending-disturbance
effects that may arise in the mid-side locations (herein referred to
as “equatorial” locations) of vertically elongated thin elliptic tor-
oids, where the vertical semi-axis b of the ellipse is greater than
the horizontal semi-axis a. Specifically, we aim to develop and
present a set of closed-form expressions for interior shell stresses
due to axisymmetric bending moments and shearing forces ap-
plied in the equatorial plane of the elliptic section as uniformly
distributed edge actions.

The formulation is intended for use in quantifying (i) the
junction effects in the vicinity of the equatorial plane of subsea
elliptic–toroidal shell structures (where a horizontal plate deck
may be attached to the inner walls of the toroid to provide an
interior working platform extending right round the torus), or (ii)
the edge effects in the vicinity of supports where the elliptic tor-
oidal vessel is used as an elevated circular tank supported on
closely-spaced vertical columns attached at both the intrados and
extrados of the torus. The relatively weak edge effects associated
with partial filling of the tank may also be quantified on the basis
of this solution. We will begin by defining the geometry of the
elliptic toroid.

2. Geometrical preliminaries

Fig. 1 shows the relevant geometrical parameters of an elliptic
toroidal shell. To generate the torus, an ellipse of semi-axes a
(horizontal) and b (vertical) is rotated about a vertical axis Y Y−
that lies at a distance A ( a> ) from the local vertical axis y y− of
the ellipse. The equatorial plane (horizontal plane of symmetry) is

denoted by E E− . In what follows, we will take the generator
curve (or meridian) of the toroidal shell as the ellipse to the left of
the axis Y Y− . Let P be any point on the generator meridian. The
radius of curvature of the ellipse at point P is denoted by r1 and the
corresponding centre of curvature by O1. For the three-dimen-
sional toroidal surface, there would be two principal radii of cur-
vature (being the maximum and minimum values of curvature) at
any given point P , and these occur in planes perpendicular to each
other. The first principal radius of curvature of the toroidal surface
at point P is the radius of curvature r PO1 1(= ) of the generator
ellipse at that point, while the second principal radius of curvature
at point P , denoted by r2, is equal to the distance PO2, where O2 is
the point at which the surface normal at P intersects the axis of
revolution Y Y− of the torus.

Point P itself may be defined by an angular coordinate ϕ, which
is the angle measured from the upward direction of the axis of
revolution of the torus to the surface normal at point P . The range
0 2ϕ π≤ ≤ covers all points on the toroidal surface, with 0 ϕ π≤ ≤
describing points in the outer region of the torus, and 2π ϕ π≤ ≤
describing points in the inner region of the torus; the coordinates

/2ϕ π= and 3 /2ϕ π= define points on the equatorial plane, which
of course correspond to the extrados and intrados of the torus
with respect to the axis Y Y− .

For the outer region of the torus 0 ϕ π( ≤ ≤ ), the principal radii
of curvature are given by [3]
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while for the inner region 2π ϕ π( ≤ ≤ ), these become
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The values of r1 and r2 at the extrados of the torus ( /2ϕ π= ) and
the intrados ( 3 /2ϕ π= ), which correspond to the outer and inner
sides of the elliptical section, will be required in due course.
Evaluating these, we obtain
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3. Governing equation

Fig. 2 shows a bending element of an axisymmetrically-loaded
shell of revolution in the ,ϕ θ{ } coordinate system. Here, the
meridional angle ϕ identifies the position of a point along a given
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Fig. 1. Geometrical parameters of an elliptic toroidal shell.
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