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a b s t r a c t

Inflatable structures are already being used for decades now especially in aerospace applications. The
Inflatoplane and inflatable space habitats are just examples. On the other hand, the modeling and si-
mulation techniques of inflatable structures are lacking far behind. Most of the available models are
concerned with cylindrical beams. In this paper, a nonlinear Finite Element model for axisymmetric
inflatable structures is developed using beam elements. The model is validated by comparing its pre-
dictions to two cases of cylindrical beams in the literature. The model is then utilized to predict the effect
of two parameters on the wrinkling load of the beam. Results show that the wrinkling load is propor-
tional to the square root of the inflation pressure. For the beam radius, it is proportional to the cube of the
radius at small radii but then the relation is linear afterwards. The model is also used to predict the
performance of an inflated truncated cone as a function of the inflation pressure and the root radius. The
proposed nonlinear Finite Element model is a step towards analyzing real-life inflatable structures.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Inflatable structures are those structures made of a fabric ma-
terial and inflated with pressurized gas in order to keep its form.
They are capable of withstanding light loads. Inflatable structures
are one type of deployable structures which have many uses
especially in space applications. They have excellent potential for
applications in large sized structures. Solar panels providing
power for the Hubble Space Telescope and many satellites, pre-
sented by Cawsey [1] are just one application. Large antennas of
20 m diameters and more for communication satellites are an-
other application introduced by Knouse and Weber [2]. They are
also used as habitat building. Di Capua et al. [3] designed, devel-
oped and tested inflatable habitat elements for NASA Lunar Ana-
logue Studies. Guest [4] reported that these structures were sent
to the space using space shuttles which had much smaller dia-
meter. In general, inflatable structures are very efficient for storing
in launch vehicles and hence they are very useful in this regard.
Also on earth, inflatable structures find many applications. A re-
view of inflatable structures and their applications is presented by
Jenkins [5].

A lot of work on inflatable structures was dedicated to the
design, development and testing of inflatable wing structures.
Some of this work is survey by Cadogan et al. [6]. Goodyear

Inflatoplane was developed in the fifties of the last century as a
military rescue aircraft. In the seventies, the Apteron unmanned
air vehicle with 1.55 m wingspan inflatable wings was developed.
Recently, the I2000 unmanned air vehicle was successfully tested
by NASA and reported by Murray et al. [7]. A group of researchers
and students at the University of Kentucky have developed several
versions of inflatable wings in which high-altitude tests are con-
ducted by sending aircrafts with inflatable wings to roughly
30,000 m altitudes on weather balloons to resemble the atmo-
spheric density on Mars as reported by Kearns et al. [8], Usui [9],
Usui et al. [10], and Smith et al. [11].

On the other hand, the work dedicated to the modeling and
simulation of inflatable structures is lacking behind the efforts in
design, building and testing. Fichter [12] presented the nonlinear
equilibrium differential equations for the stretching, bending and
twisting of pressurized thin-wall cylindrical beams. Fichter model
was quite difficult to solve due to the high nonlinearities. To avoid
this difficulty, he studied two simple examples and solved the
linearized equations to illustrate the applicability of the theory.
Breukels and Ockels [13] presented a simple model for the analysis
of complex inflatable structures using multi-body dynamics ap-
proach. In the last decade, several finite element models for in-
flatable beams and panels were presented by Thomas and Wiel-
gosz [14], Le Van and Wielgosz [15], Davids [16], Davids and Zhang
[17], and Apedo et al. [18]. Recently, Gajbhiye et al. [19] presented a
Finite Element analysis model for inflatable torus considering air
mass structural element.
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A large portion of modeling and simulation research on in-
flatable structures was dedicated to the study of the wrinkling
phenomenon. According to Veldman [20], wrinkling is the state in
which the sum of the tensile pre-stress and the bending stress has
become negative at some location in the beam. The membrane
material cannot sustain a negative stress and therefore, it starts to
wrinkle. Wrinkling generally occurs first in the location which has
the highest compressive stress due to the externally applied load.
Main et al. [21] presented a finite element model based on con-
ventional beam theory to calculate the magnitudes of deflection
and stress at the onset of wrinkling. Main et al. [22] studied
wrinkling based on a strain criterion in another paper. Le Van and
Wielgosz [23] studied the wrinkling load based on the linearized
Timoshenko beam theory. Recently, Wang et al. [24], and Du et al.
[25] studied the wrinkling of membrane inflated cones based on
simplified analytical models.

The survey of literature available for inflatable structures shows
that there exists a big gap between the inflatable structures ap-
plications and the available modeling techniques. Most of the
modeling research was directed towards simple cylindrical beams.
In this paper, a nonlinear theoretical model is presented, a Finite
Element model is developed, validated and utilized to predict the
performance of axisymmetric inflatable beams. This paper can be
considered as one step towards filling the gap between theory and
applications of inflatable structures.

2. Theoretical model

Fig. 1 shows an inflatable axisymmetric beam with a circular
cross-section whose length is L and thickness is t. The beam axis is
aligned to the x axis. The radius r varies along the axial position
such that r¼r(x). It is important to mention that by ‘axisymmetric’
we mean axisymmetric only in geometry such that the cross-
section at any point is circular. On the other hand, the loads, dis-
placements, stresses and strains may be axisymmetric or not. The
material constants; elasticity and shear moduli (E and G) may be
defined independently and hence the definition of these constants
holds for orthotropic materials [12].

The point P is located on the beam surface at a distance r from
the axis of the beam, and up is the displacement vector of point P

including three displacement components u v wp p p
T{ } such that

up and vp are tangent to the surface while wp is normal to it. As-
suming small variations of r with respect to x, up is in the direction
of the beam axis, wp is along the radius vector and vp is normal to
both of them. The displacement components can be expressed in
terms of the corresponding displacement components at the sec-
tion centroid (along the beam axis) u v w T{ } as follows

u u r r

v v w r
r

w v w
r

cos sin

cos sin
4

sin 2

sin cos
2

cos sin
1

p y z

p x y z

p x y z

2 2

2 2 2 2 2

θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ θ

= + −

= − − + ( − )

= + − ( + + ) ( )

where x y zθ θ θ{ } are the angular rotations of the section about
the x, y and z axes, while θ is the angular position of the point P as
shown in Fig. 1.

According to the principle of virtual work

W 0 2s p
∏ ∏δ δ δ+ − = ( )

where sδ ∏ is the variation in the strain energy, pδ ∏ is the

variation in the potential energy due to the internal pressure in the
inflatable structure, while Wδ is the work done by external loads.

The variation in the strain energy encompasses the work done
by all internal forces (normal forces in x direction N , shear forces
in y and z directions Vy and Vz ), and the internal moments about x,
y and z axes (Mx,My, and Mz) and hence the strain energy sδ ∏ can
be expressed in terms of the sum of the products of relevant force
and strain components integrated over the domain x L0 ≤ ≤ , as
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The six strain components can be expressed in terms of dis-
placement functions, and their derivatives, up to quadratic terms
as derived by Fichter [12] are
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Using the strain–displacement relationships in Eq. (6) in Eq. (5)
leads to expressing the variation in the strain energy in terms of
displacement functions.

The variation in the potential energy due to pressure and vo-
lume change pδ ∏ is

Fig. 1. Schematic of axisymmetric inflatable beam showing displacement compo-
nents of point P in local coordinates and those in global coordinates at the beam
axis.
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