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a b s t r a c t

Natural vibrations of free rectangular plates are usually analysed by numerical methods since it is not
possible to obtain the closed form analytical solution. In this paper a simple analytical procedure for
estimation of natural frequencies of free thin rectangular plates, based on the Rayleigh's quotient, is
presented. First, natural modes are assumed in the usual form as products of beam natural modes in
longitudinal and transverse direction, satisfying the grillage boundary conditions. Based on a detailed
FEM analysis some additional natural modes are recognized, which are defined as sum and difference of
the cross products of beam modes. Their frequency spectra are very close and identical in some special
cases manifesting in such a way double frequency phenomenon. These three families of natural mode
shapes form a complete natural frequency spectrum of a free rectangular plate as a novelty. The reliable
approximation of natural modes enables application of the Rayleigh's quotient for estimation of higher
natural frequencies. Application of the developed procedure is illustrated in the case of a free thin square
and rectangular plate. The obtained results are compared with those determined by FEM and also with
more rigorous ones from the relevant literature based on the Rayleigh–Ritz method. The achieved ac-
curacy is acceptable from the engineering point of view, and the procedure can be applied to improve the
hydroelastic analysis of VLFS.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The rectangular plate is a structural element used in many
engineering structures. Thin and thick plates are distinguished,
and are analysed by the Kirchhoff and Mindlin theory [1] and [2],
respectively. For instance, thin plate is structural element of ship
deck and bulkhead grillages, where one field between cross gir-
ders can be considered as an individual plate [3]. Recently very
large floating structures (VLFS), i.e. floating airports, artificial is-
lands etc., are treated as a large thin plate [4].

Vibration of thin rectangular plate is a classical problem ana-
lysed in a large number of papers and is already solved [5], while
vibrations of thick plates are still being investigated [6] and [7]. In
both cases the analytical solution is achieved for rectangular plate,
which is simply supported at least at two opposite edges. For all
other combinations of the boundary conditions (simply supported,
clamped and free), numerical methods are used, as for instance
the Rayleigh–Ritz method, or more often FEM due to its simplicity.

In 1973, Leissa [8] presented analytical solution for free vibra-
tions of rectangular plate simply supported at two opposite edges.

Also, problem of mixed boundary conditions (simply supported
(S), clamped (C) and free (F)) is analysed by the Rayleigh–Ritz
method assuming plate deflection as products of beam natural
modes. Clamped and simply supported plate boundary conditions
are exactly satisfied, while free edge conditions are only approxi-
mated, reducing in such a way the accuracy of the results. It is
concluded that additional symmetry of the square plate increases
confusion when identifying natural modes. Certain vibration
modes have not been discovered in the relevant literature.

Mizusawa [9] analysed natural response of rectangular plates
with free edges by the Rayleigh–Ritz method with B-spline func-
tions, and investigated the effects of Poisson's ratio on natural
frequencies for free-edge square plates. Differential quadrature
element method is applied to vibration analyses of plates with free
boundary conditions by Malik and Bert [10], while Wang et al. [11]
utilized the similar approach for both static and dynamic con-
sideration of the above problem. In order to overcome the diffi-
culty of implementing the free boundary conditions in the discrete
singular convolution (DSC) Wei and his collaborators, [12] and
[13], have developed the method of matched interface and
boundary (MIB), capable to analyse first several natural fre-
quencies. Also, the discrete DSC method is applied by Wang and
Xu [14] and comparisons with the above solutions are provided.
Furthermore, in the context of applicability of related
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mathematical models to the analysis of dynamic response of very
large floating structures (VLFS), Wang et al. [15] highlighted some
problems in obtaining accurate modal stress-resultant distribu-
tions in freely vibrating plates analysed by conventional methods.
Namely, they showed that if one adopts the classical thin plate
theory and the Galerkin's method with commonly used modal
functions consisting of the products of free-free beam modes, the
natural boundary conditions are not satisfied at the free edges.
Moreover, they indicated persistence of the mentioned problem
within adoption of the refined Mindlin plate theory and use of
NASTRAN software [16] (utilizing finite element method) or the
Ritz method. Also, Wang et al. [15] demonstrate that a modified
version of the Ritz method, which involves penalty functional for
enforcement of the natural boundary conditions does not solve the
problem when the plate is relatively thin, due to so called artificial
stiffening of the plate. In order to overcome the above problem,
Wang et al. [17] later proposed a mesh-free least squares-based
finite difference method (LSFD) for evaluating vibration solutions
of completely free plates, adopting not classical, but Mindlin plate
theory.

Generally speaking, in the Rayleigh–Ritz method, natural
modes are presented by polynomials with large number of terms
resulting in a rather time consuming procedure. More effective is
to assume physical natural modes in a series of mathematical
modes. For this purpose, products of beam natural modes in
longitudinal and transverse direction, satisfying the grillage
boundary conditions, are usually used. In this case one mathe-
matical mode is dominant. However, FEM vibration analysis of a
free square plate shows that there are some modes of extra-
ordinary shapes, which cannot be approximated by product of
beam modes successfully, since none of the mathematical modes
is dominant.

In order to overcome the above problem an analytical in-
vestigation of natural vibrations of a free thin rectangular plate is
undertaken. Two additional families of extraordinary modes
shapes are identified and described by sum and difference of beam
natural modes, respectively. The Rayleigh's quotient is used not
only for the first but also for the higher modes [18]. In such a way
complete and denser spectrum of natural frequencies is obtained.

2. General solution of differential equation

A rectangular plate specified in the Cartesian coordinate system
is considered, Fig. 1. Differential equation of natural vibrations is
obtained by employing constitutive equilibrium equations of

sectional forces and moments, and Hooke's law for their depen-
dence on change of curvature [5]
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Natural vibrations are harmonic, i.e. w Wei t= ω and Eq. (1) is
reduced to the amplitude differential equation
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where ω is natural frequency.
An ordinary differential equation has unique general solution

and integration constants are determined later on by satisfying
boundary conditions. On the contrary, partial differential equation
can have a few general solutions and it is necessary to find such
one which will satisfy given boundary conditions a priori. In the
plate theory solution of Eq. (2) is ordinary assumed in the form of
separated variables.
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By substituting Eq. (3) into Eq. (2), yields
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where r m D/2 2ω= ¯ .
Solution for the separated functions is assumed in the ex-

ponential form
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Their substitution into Eq. (4) leads to the characteristic equa-
tions
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with two solutions
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Furthermore, each of Eq. (7) has two solutions, i.e. 1,2μ α= ± ,

1,2λ β= ± , and i3,4μ α= ± , i3,4λ β= ± . Finally, by substituting the
obtained roots into (5) one can write
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The even and the odd constants in (8) are related to the sym-
metric and antisymmetric modes, respectively.

3. Natural vibrations of free plate based on solution of differ-
ential equation

3.1. Boundary conditions

Boundary conditions for a free plate are related to the bending
moments, torsional moments and shear forces. Since there are
more conditions than unknown constants in solution (8), torsional
moments are incorporated into the shear forces [5]. Hence, ex-
pressions for bending moments and effective shear forces are the
following:Fig. 1. Particulars of a thin rectangular plate.
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