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a b s t r a c t

In this paper, a hybrid method for simultaneously maximizing fundamental natural frequency and
thermal buckling temperature of laminated composite plates is developed. This method is a new com-
bination of the differential quadrature method (DQM), non-dominated sorting genetic algorithm II
(NSGA-II) and Young bargaining model. The governing equations are obtained within the framework of
the first-order shear deformation theory (FSDT) of plates and are discretized using the DQM. Then, the
DQM is linked with the NSGA-II optimization model and the trade-off between the objectives with re-
spect to fibers orientations is obtained. Finally, by applying Young bargaining model the best fibers or-
ientations which maximize the objectives of laminated composite plates with different boundary con-
ditions, thickness-to-length and aspect ratios are obtained.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Due to proper performance and high strength to weight ratio,
laminated composites are widely used in various types of struc-
tures and optimum design of these structures is of interest in
different fields of engineering. Among design parameters, fibers
orientations play an important role in single or multi-objective
optimization problems. In multi-objective optimization problems
two or more criteria should be optimized [1–15].

To date, there have been a number of researches on multi-ob-
jective optimization of laminated composite structures with fibers
orientations as design variables. The multi-objective optimization
problem can be solved in different ways which are mentioned in
the following part.

In the first type of multi-objective optimization problems, a
function as a weighted sum of the objectives is defined and the
problem is transformed to a single-objective one. Abouhamze and
Shakeri [5] maximized a weighted sum of natural frequency and
buckling load of laminated cylindrical panels by applying the finite
element method, genetic algorithms and neural network. Topal
and Uzman [6] maximized weighted sum of biaxial compressive

and thermal buckling loads of laminated composite plates using
the finite element method and modified feasible direction method
as an optimization technique. Topal [7] used the finite element and
feasible direction optimization method to maximize a weighted
sum of buckling load and frequency of laminated cylindrical shells.
Sadeghifar et al. [8] combined the genetic algorithms optimization
method and Rayleigh–Ritz energy procedure to optimize a
weighted sum of weight and axial buckling load of stiffened cy-
lindrical shells.

In the second type of multi-objective optimization problems,
optimization techniques employ to obtain Pareto front or trade-off
curve of the objectives and then from the Pareto front the opti-
mum result is obtained. Almeida and Awruch [9] minimized the
deflection and weight of composite laminated plates using the
finite element method and genetic algorithm. They found the
minimum weight and the related optimum deflection from the
obtained Pareto front. Lee et al. [10] used the parallel/distributed
evolutionary algorithm and a commercial finite element software
to minimize the deflection, weight and cost of multi-layered
structures. Madeira et al. [11] used the direct multi-search opti-
mization technique and finite element method to maximize loss
modal factor and minimize weight of laminated composite plates
by obtaining the Pareto front of the objectives. Pelletier and Vel
[12] applied the simplified micromechanics equations to maximize
load carrying capacity and minimize the mass of laminated
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composite materials by an integer-coded genetic algorithm from
Pareto front of the objectives. Rahul et al. [13] combined the finite
element method and genetic algorithm optimization technique to
minimize cost and weight of laminated composite plates subject to
impact load using the Pareto front. Abachizadeh and Tahani [14]
employed the ant colony optimization technique and analytical
solution for maximizing fundamental natural frequency and cost
minimization of laminated composite plates.

In the third type of multi-objective optimization problems,
objectives have the same importance and bargaining models such
as game theory, Taguchi's method and so on can be employed to
obtain the optimum result from the Pareto front of the objectives.
Spallino and Rizzo [15] combined the closed form solution, genetic
algorithms and game theory to maximize frequency and buckling
load of laminated composite thin plates, simultaneously.

From the above mentioned review and to the best of author's
knowledge, it has been shown that there are no publications on
the maximizing fundamental natural frequency and thermal
buckling temperature of laminated composite plates, simulta-
neously. So, in this paper a hybrid method for the maximizing
fundamental natural frequency and thermal buckling temperature
of moderately thick laminated composite plates is presented. The
free vibration and thermal buckling governing equations of lami-
nated composite plates are obtained within the framework of the
first-order shear deformation plate theory. The governing equa-
tions and the related boundary conditions are discretized using
the differential quadrature method. The DQM solution procedure
is linked with the non-dominated sorting genetic algorithm II
optimization technique and the trade-off curve between the ob-
jectives with respect to fibers angles as design variables is carried
out. Then, Young bargaining model is employed to find the best
fibers orientations on the basis of the obtained trade-off. The re-
liability and applicability of the presented method is demonstrated
through different examples.

2. The governing equations

A symmetric laminated composite plate with NL perfectly
bonded orthotropic layers of length a, width b and total thickness
h is considered (see Fig. 1). According to the first-order shear
deformation theory (FSDT) the free vibration and thermal buckling
governing equations for the laminated composite plates subjected
to uniform temperature rise can be stated as [16],

I. Free vibration
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II. Thermal buckling
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Fig. 1. The geometry of the plate.
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